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Abstract
Large volume of data is growing because organizations are continuously 
capturing the collective amount of data for a better decision-making pro-
cess. The most fundamental challenge is to explore the large volumes of 
data and extract useful knowledge for future actions through knowledge 
discovery tasks, nevertheless many data has poor quality. We presented 
a systematic review of the data quality issues in knowledge discovery 
tasks and a case study applied to agricultural disease named coffee rust.
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Una revisión sistemática de problemas de calidad en los datos  
en tareas de descubrimiento de conocimiento

Resumen
Hay un gran crecimiento en el volumen de datos porque las organizacio-
nes capturan permanentemente la cantidad colectiva de datos para lograr 
un mejor proceso de toma de decisiones. El desafío mas fundamental 
es la exploración de los grandes volúmenes de datos y la extracción de 
conocimiento útil para futuras acciones por medio de tareas para el descu-
brimiento del conocimiento; sin embargo, muchos datos presentan mala 
calidad. Presentamos una revisión sistemática de los asuntos de calidad 
de datos en las áreas del descubrimiento de conocimiento y un estudio de 
caso aplicado a la enfermedad agrícola conocida como la roya del café.

Palabras clave: heterogeneidad, valores atípicos, ruido, inconsistencia, 
valores perdidos, cantidad de datos, redundancia, oportunidad.
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INTRODUCTION

Data explosion is an inevitable trend as the world is interconnected more now than 
ever. It is obvious that we are living a data deluge era, evidenced by the sheer volume 
of data from a variety of sources and its growing rate of generation. For instance, an 
International Data Corporation (idc) report [1] predicts that, from 2005 to 2020, the 
global data volume will grow by a factor of 300, from 130 exabytes to 40,000 exabytes, 
representing a double growth every two years [2]. The most fundamental challenge is 
to explore the large volumes of data and extract useful knowledge for future actions 
through knowledge discovery tasks as classification, clustering, etc. [3-4], however 
many data suffer from a lack of quality. It has been agreed that poor data quality will 
impact the quality of results of analyses in knowledge discovery tasks and that it will 
therefore impact on decisions made on the basis of these results [5-6].

In this paper we present a systematic review for data quality issues in knowledge 
discovery tasks as: heterogeneity, outliers, noise, inconsistency, incompleteness, amount 
of data, redundancy and timeliness which are defined in [7-8] and a case study in 
agricultural diseases: the coffee rust.

This paper is organized as follows. Section II describes the data quality issues 
and the systematic review. The case study in the coffee rust is depicted in Section III 
and Section III concludes.

1. DATA QUALITY ISSUES IN KNOWLEDGE DISCOVERY TASKS

This section gathers the main related works that address issues in data quality. The 
studies present different approaches to solve issues in data quality such as: heteroge-
neity, outliers, noise, inconsistency, incompleteness, amount of data, redundancy and 
timeliness [7-8]. We conduct a systematic review based on methodology [9], for each 
data quality issues, drawn from four informational sources: ieee Xplore, Science Direct, 
Springer Link and Google. Table 1 shows the papers found:

Table 1. Papers to solve data quality issues

Data Quality Issues
Papers per source

ieee Xplore Science Direct Springer Link Google

Heterogeneity 11 3 1 18

Outliers 28 10 7 2

Noise 15 2 2 0

Inconsistency 9 5 0 2
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Data Quality Issues
Papers per source

ieee Xplore Science Direct Springer Link Google

Incompleteness 21 14 4 0

Amount of data 23 15 10 5

Redundancy 24 13 10 8

Timeliness 2 0 1 1

Source: authors

Data quality issues as redundancy, amount of data, outliers, and incompleteness 
have received a mayor attention from the research community (55 papers for redundancy, 
53 for amount of data, 47 for outliers, and 39 for incompleteness).Whilst, heteroge-
neity, noise, inconsistency and timeliness have received a minor attention (33 papers 
for heterogeneity, 19 for noise, 16 for inconsistency and 4 for timeliness). In figure 1 
we can observe the classification of papers by approaches to solve data quality issues.
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Figure 1. Classification of papers by approaches to solve data quality issues. 
Source: authors
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1.1 Heterogeneity

Heterogeneity defined as incompatibility of information. Two types of heterogeneity 
have been identified: the first one is called “syntactic heterogeneity” that refers to the 
differences among definitions; such as, attribute types, formats, or precision. The second 
one is called “semantic heterogeneity” and refers to the differences or similarities in 
the meaning of data [10]. The algorithms presented in the papers to solve the hete-
rogeneity issue were classified in four categories: unsupervised learning, supervised 
learning, statistics, and others, as shown in figure 2. We can observe that statistical 
methods are the most used since 2006 to present and supervised learning are handled 
broadly since 2010 and beyond. And works that involve pattern matching approaches 
were developed in 2009.
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Figure 2.  Approaches to solve the heterogeneity issue timeline. 
Source: authors

Figure 3 shows that statistical methods [11] are trending to solve the heterogeneity 
issue followed by unsupervised (i.e., partitional cluster algorithms such as: K-means 
and weighted k-means) and supervised learning (i.e., nearest neighbor algorithms 
as: k-nn and ensemble K-NN) learning [12-14]. An alternative the pattern matching 
approach appears [15-16].
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Figure 3. Algorithms for addressing the heterogeneity issue. 
Source: authors
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1.2 Outliers

These are observations which deviate so much from other observations that they arouse 
suspicions of having been generated by a different mechanism [17]. Outlier detection 
is used extensively in many applications. Current application areas of outlier detection 
include: detection of credit card frauds, detect on of fraudulent applications or potentially 
problematic customers in loan application processing, intrusion detection in computer 
networks, medical condition (monitoring such as heart-rate monitoring), identification 
of abnormal health conditions, detect on of abnormal changes in stock prices and fault 
diagnosis [18]. The algorithms presented in the papers to solve the outliers issue were 
classified in four categories: unsupervised learning, supervised learning, statistics 
and others, as shown in figure 4. Unsupervised learning is the most used since 2008, 
followed by statistical methods since 2005, while supervised learning was exploded in 
2004. It is important to point out that genetic algorithms are currently in use.
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Figure 4:  Approaches to solve the outliers issue timeline. 
Source: authors
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Figure 5 depicts the techniques to solve the outliers issue. Several papers make 
frequent use of unsupervised learning (i.e., partitional, density and hierarchical al-
gorithms) and statistical methods [19-24]; lesser extent the supervised learning (i.e., 
variations of decision tree, k-nn and support vector machine algorithms) and genetic 
algorithms [25–27].

Figure 5. Algorithms for addressing the outliers issue. 
Source: authors
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1.3 Noise

Defined as irrelevant or meaningless data [28] in the instances. For a given domain-
specific dataset, attributes that contain a significant amount of noise can have a detri-
mental impact on the success of a knowledge discovery initiative, e.g., reducing the 
predictive ability of a classifier in a supervised learning task [29]. To address the noise 
issue, algorithms were classified in three categories: unsupervised learning, supervised 
learning, and others, as shown in figure 6. Although, the solutions for noise come from 
different fields, these are not currently widely used (its peak was from 2005 to 2009). 
In contrast, the supervised and unsupervised learning are currently used (from 2008, 
and 2009 respectively, until the present time).
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Figure 6. A pproaches to solve the noise issue timeline. 
Source: authors

The most popular algorithms to address the noise issue have come from different 
fields (others category in figure 7) such as: hash function, string matching algorithms, 
fuzzy systems, among others [30]. Supervised and unsupervised learning algorithms 
are the next most popular to address this issue [31-34].
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Fuzzy routh prototype selection algorithm removes noisy instances polishing, noise elimination and robust algorithms (Decision Tree)
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Figure 7. Algorithms for addressing the noise issue. 
Source: authors

1.4 Inconsistency

It refers to the lack of harmony between different parts or elements; instances that are 
self-contradictory or lack agreement when expected [7]. This problem is also known as 
mislabeled data or class noise. e.g., in supervised learning tasks, two instances have the 
same values, but have different labels or the label values do not correspond themselves. 
The algorithms found in the papers that solve the inconsistency issue were classified 
in two categories: supervised learning and statistics, as shown in figure 8. Supervised 
learning algorithms are widely used since 2005 compared to statistical methods, only 
three of their approaches were used in 2008, 2009 and 2010.

Figure 8. Approaches to solve the inconsistency issue timeline. 
Source: authors
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In figure 9 it is possible to see that the supervised learning algorithms (such 
as: ensemble methods and simple classifiers) [35-36] are more used than statistical 
algorithms (i.e., Bayesian approaches and Receiver Operating Characteristic, roc, 
analysis) [37-39].

Figure 9. Algorithms for addressing the inconsistency issue. 
Source: authors
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1.5 Incompleteness

Data sets affected by missing values have been widely aknowledged. This tipically 
occurs because of sensor faults, lack of response in scientific experiments, faulty mea-
surements, and data transfer problems in digital systems or respondents unwilling to 
answer survey questions [40]. The algorithms presented in the papers that addressed 
the incompleteness issue were classified in four categories: unsupervised learning, 
supervised learning, statistics and others. Given the results in figure 10 we argue that 
the increase of statistical methods and the unsupervised and supervised learning al-
gorithms solve the incompleteness issue from 2010. However, the statistical methods 
have been more explored than the unsupervised and supervised learning algorithms.

Figure 10. Approaches to solve the incompleteness issue timeline. 
Source: authors
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Figure 11 depicts that the mostly applied algorithms more used are statistics (i.e., 
imputation methods) [41-44], followed by unsupervised learning (i.e., combination 
of partitional and fuzzy algorithms, among others) [45-47], supervised learning (i.e., 
ensemble of svm and neural networks, k-nn, Bayesian network, etc.) [48-50] and in a 
lesser extent, the ontologies [51].

Figure 11. Algorithms for addressing the incompleteness issue. 
Source: authors
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1.6 Amount of data

The amount of data available for model building contributes to relevance in terms of 
goal attainment [7]; small and imbalanced datasets build inaccurate models. The algo-
rithms found in the papers that solve the amount of data issue were classified in four 
categories: unsupervised learning, supervised learning, statistics and others. We can 
analyze, in figure 12, the increase in use of usage of statistical methods (since 2004), 
supervised learning (since 2005) and unsupervised learning (since 2010) until present 
times. The other approaches are used in lesser extent (2012).
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Figure 12. Time-line of approaches to solve the amount of data issue. 
Source: authors
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We can analyze, in figure 13, that statistical methods are the most relevant approach 
to generate new instances, using techniques such as: synthetic minority oversampling 
technique (smote), intervalized kernel density estimator, multimodality variables [52-
54], as well as combination of statistical methods with supervised learning algorithms 
such as: posterior probability of support vector machine (svm) and neural networks 
[55-57]. Furthermore, the statistical methods is the most important approach to balan-
ce datasets through oversampling and under sampling techniques, besides of hybrid 
techniques with unsupervised learning algorithms such as: K-means based oversam-
pling and fuzzy C means based oversampling [58-60]. Other approaches exist from 
evolutionary algorithms and fuzzy systems [61-64].

Figure 13. Algorithms for addressing the amount of data issue. 
Source: authors
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1.7 Redundancy

As the name implies, it is the redundant information, such as duplicate instances and 
derived attributes of others that contain the same information [65-66]. As mentioned 
above, the algorithms found in the papers to solve the redundancy issue were classified 
in four categories: unsupervised learning, supervised learning, statistics and others. 
The approaches to solve the redundancy issue timeline is shown in figure 14. The use of 
unsupervised learning algorithms have grown since 2008, and the supervised learning 
algorithms since 2010. Meanwhile the statistical methods have decreased in use (from 
the year 2006 to 2010). Other approaches as evolutionary and greedy algorithms are 
used at the present time (2013-2014).

Figure 14. Approaches to solve the redundancy issue timeline. 
Source: authors
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In figure 15 the supervised learning approach is the most commonly used, specia-
lly nearest-neighbor algorithms as: k-nn, selective nearest neighbor rule, condensed 
nearest neighbor, multi edit nearest neighbor, etc. [65, 67-68], followed by unsuper-
vised learning techniques [69-72], in addition to other approaches from evolutionary 
(memetic and clonal selection) and greedy (sequential forward selection and plus-L 
minus-R selection) algorithms [65-66].
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Figure 15. Algorithms for addressing the redundancy issue. 
Source: authors
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1.8 Timeliness

It is defined as the degree, in which, data represent reality from the required point in 
time. When the state of the world changes faster than our ability to discover these state 
changes and update the data repositories accordingly, the confidence on the validity 
of data decays with time [73]. For example, people move, get married, and even die 
without filling out all necessary forms to record these events in each system where 
their data is stored [74].

In this sense, to solve the timeliness issue, researchers such as [75–77] use decay 
functions (df) as measure of the degradation of knowledge integrity. A df takes some 
associated information that correspond to a description of the instance (for example, 
the source-destination pair of a network packet) and returns a weight for this instan-
ce; sliding window, exponential decay and polynomial decay are examples of DF. 
Correspondingly, [73] proposes two approaches (analytical and algebraic) to deal 
with information obsolescence based on credibility thresholds defined by associated 
information of an instance.

2 DATA QUALITY ISSUES IN AGRICULTURAL DISEASES: COFFEE RUST

The data quality issues discussed above can appear in any application domain. For 
uniformity and easiness purposes, in this section, the examples for each data quality 
issue are focused on coffee rust disease and its weather conditions. Rust is the main 
disease that attacks coffee crops and it causes losses up to 30 % in susceptible varieties 
of Arabica Coffee species in Colombia. In regions of Brazil, where climate conditions 
favor the disease, losses can reach 35 %, and sometimes even more than 50 % [78-82].
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2.1 Heterogeneity

Practical examples are the data collected by weather stations (ws). Let us suppose that 
exist two ws with data of temperature. The ws “A” measures the temperature with 
a dot as decimal separator and the ws “B” with a comma. When we try to fuse the 
temperature data of ws “A” and “B” we find a syntactic heterogeneity issue. Equally, 
the ws “A” measures the temperature in Celsius degree and the ws “B” in Fahrenheit 
scale, in this case we find a semantic heterogeneity issue.

2.2 Outliers

The outliers can be presented as an error in the process of the data collected or abnormal 
behaviors of the scenario modelled. Supposing that we have a dataset with incidence 
rate of rust measurements. In the first case the presence of outliers occurs by human 
errors in the count of infected leafs per coffee tree. Whereas, in the second case, the 
change of weather conditions generate outliers, even though the measurements of 
infection rust are correct. Figure 16 presents examples of outliers.

Figure 16. Outliers: plants per hectare vs. incidence rate of rust. 
Source: authors
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2.3 Noise

A particular case of noise is given by temperature, humidity and rainfall dataset of a 
weather station. The sensors are misconfigured and its measurements have incoherent 
values as temperature of 250°C, humidity of -70%, and rainfall of -15 mm as seen in 
table 2.
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Table 2. Example of dataset with weather variables and noise. 

Temperature (°C) Humidity (%] Rainfall (mm)

16.49 97.53 0.8

16.88 -70 0.6

16.58 98.73 1

15.24 97.88 -0.9

15.84 99.71 0.3

250 97.47

15.07 -300 0.1

16.19 89.07 -15

Source: authors

2.4 Inconsistency

Assuming we have a dataset for coffee rust detection with the attributes: coffee rust 
control in the last month (Yes/No), coffee rust control in the last 3 months (Yes/No), 
fertilization in the last 4 months (Yes/No), and the class: rust presence(Yes/No). A 
case of inconsistency is given by contradictions in the values of attributes and class. 
For example if a coffee rust control if had or had not been applied in last month and 
the last three months, and neither fertilizations in the last four months, and if the class 
did not declare the rust presence, it is possible that the instance is incoherent (second 
instance is shown in table 3). Another example occurs when the class is mislabeled. 
Assuming that we have two instances with the same values in the attributes (coffee 
rust control in the last month = “Yes”, coffee rust control in the last 3 months = “Yes”, 
fertilization in the last 4 months = “Yes”) but the values of its classes are different (for 
first instance the rust presence is “Yes” whereas the second instance is “No”) as we 
can see in the first and third instance of the table 3.

Table 3. Example of dataset for coffee rust detection with inconsistencies. 

Coffee rust control in 
the last month.

Coffee rust control in 
the last 3 months

Fertilization in the 
last 4 months

Rust presence

Yes Yes Yes Yes

No No No No

Yes Yes Yes No

Yes Yes No No

Yes No Yes No
Source: authors



141A systematic review of data quality issues in knowledge discovery tasks

Revista Ingenierías Universidad de Medellín, vol. 15, No. 28  pp. 125-150 ISSN 1692 - 3324  -  enero-junio de 2016/324 p. Medellín, Colombia

2.5 Incompleteness

Considering the data collected by weather stations, we may observe that some values 
are missing due to lapses found in the sensors, electrical interruptions, and losses in 
data transmission, etc. Table 4 shows the missing values represented by symbol “?”.

Table 4. Example of dataset with weather variables and incompleteness.

Temperature (°C) Humidity (%] Rainfall (mm)

20 70 5.4

19 ? ?

? 75 6.5

18 ? ?

? 77 6.5

21 ? 0.7

23 78 6.2

? 95.75 0.8

Source: authors

2.6 Amount of data

A real case is presented in [80, 82]. Their dataset includes 147 instances to try to detect 
the incidence rate of rust. Nevertheless, the few instances to train a classifier limit its 
performance, since the classifier cannot take the right decision if data training does 
not have cases that support the expected decision. On the other hand, the imbalanced 
issue is explained with the next example: assuming we have a dataset for coffee rust 
detection with the attributes: coffee rust control in the last month (Yes/No), coffee rust 
control in the last three months (Yes/No), fertilization in the last four months (Yes/
No), and the class: rust presence (Yes/No); the number of instances with label rust 
presence = “Yes” are 100 and 900 instances with label rust presence = “No”, this a 
case of imbalanced dataset.

2.7 Redundancy

Redundancy is produced by duplicate instances and derived attributes of others that 
contain the same information. Imagine we have a dataset for coffee rust detection 
with the attributes: coffee rust control in the last month, coffee rust control in the last 
three months, fertilization in the last four months, length, width, area of a plot and the 
class: rust presence (Yes/No). In table 5, the first and second instance are examples 
of duplicate instances. Whereas derived attributes are the length and width of a plot 
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because the area contains the same information (the area is computed as product of 
length and width).

Table 5. Example of dataset for coffee rust detection with redundancies. 

Coffee rust 
control in the 
last month.

Coffee rust 
control in the 
last 3 months

Fertilization 
in the last 4 

months
Length (m) Width (m) Area (m2) Rust 

presence

No No No 100 100 10,000 Yes

No No No 100 100 10,000 Yes

Yes Yes No 90 80 7,200 No

Yes Yes Yes 130 50 6,500 No

Source: authors

2.8 Timeliness

A basic sample of timeliness is the construction of a classifier for coffee rust detection 
based on weather data from 1998. The classifier will be accurate to detect coffee rust 
in the year 1998; however, in the actuality it does not work due to weather changes in 
recent years.

On the basis of the foregoing, we have identified four data quality issues (noise, 
incompleteness, outliers and amount of data) in a real dataset for coffee rust detection 
exposed in [80, 82]. The data used in this work was collected at the Technical Farm 
(Naranjos) of the Supracafe, in Cajibio, Cauca, Colombia (21°35’08”N, 76°32’53”W), 
during 2011-2013. Within the dataset includes 147 samples from the total of 162 availa-
ble. The remaining 15 samples were discarded manually due to data quality problems 
in the collection process. Within the 15 instances discarded, 9 had noise issue (sensors 
of weather station were misconfigured) and 6 of incompleteness (lost in the data trans-
mission of weather station with server). Moreover, 8 samples of 147 instances of the 
dataset were detected as outliers due to the poor process to apply the methodology in 
the incidence rate of rust. As a final point, the amount of data issue is reflected on the 
dataset, since it is very small to try to detect coffee rust, considering that incidence 
rate of rust lies among 1 % and 20 % with only 147 samples.

3 CONCLUSIONS AND FUTURE WORKS

In this study we have reviewed the relevant literature to identify the major data quality 
issues in order to improve the community’s awareness and understanding of the quality 
challenges (and current solutions). The systematic review presented above offers four 
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approaches to solve the data quality issues in knowledge discovery tasks: unsupervi-
sed and supervised learning, statistical methods and others. 59.76 % of papers used 
unsupervised and supervised learning, followed by 31.57 % of statistical methods and 
other approaches with 8.64 %. The trend to use unsupervised and supervised lear-
ning occurs because of the ability to handling large volume of data. Different from 
of statistical methods which assume a known underlying distribution of data. It is 
also worth to observe that 27.41 % of papers with statistical methods use multivariate 
techniques and 73.59 % use univariate techniques. Low use of multivariate methods 
happens because statistical methods are often unsuitable for high-dimensional data 
sets. Other approaches as ontologies, evolutionary algorithms and fuzzy systems are 
considered interesting to support main approaches as unsupervised and supervised  
learning.

From the agricultural domain: we considered two data quality issues out of reach: 
the first one is the timeliness: the treatment of data during the collection process, con-
sidering that extra associated information of the instance in the moment of recollection 
(for example, the date of data capture temperature, humidity, rainfall, age of weather 
station, etc.) is needed, and usually the re-collectors do not discover this types of de-
tails. The second one is the amount of data. To capture this kind of data it is necessary 
to have workers that cross the crops and count the infected leafs permanently, which 
implies high cost and qualified personnel.
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