
1Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

* MSc. Universidad Pontificia Bolivariana Seccional Monteria, Grupo de Investigaciones en Informática y
Tecnologías emergentes ITEM, E-mail: fabian.lara@upb.edu.co. Instituto Universitario de Ingeniería Energética,
Universitat Politécnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain ORCID https://orcid.
org/0000-0001-8246-1852.

** MSc. Universidad de Pamplona, CICOM. Ciudadela Universitaria, Pamplona, E-mail: lesteban@unipamplona.
edu.co, ORCID https://orcid.org/0000-0002-5724-9136

DEPLOYMENT MODEL FOR SOFTWARE PROCESSES
IN COLLABORATIVE AND DISTRIBUTED ENVIRONMENTS TYPICAL

OF FREE AND OPEN-SOURCE FLOSS COMMUNITIES

Fabian Alonso Lara Vargas*

Luis Alberto Esteban Villamizar**

Received: 19/10/2022 • Accepted: 16/04/2023
https://doi.org/10.22395/rium.v22n43a2

ABSTRACT
This article presents the development of a model for deploying software
processes within the context of free and open-source software FLOSS
communities, characterized by the voluntary participation of people
geographically distributed in different places and with diverse profiles
and interests in a software development project. The Delphi method
validated the model, in which 15 people interested in FLOSS communities
participated. It was found that the model promotes communication and
motivation of the participants in more than 80% and favors the participa-
tion of new community members, according to the answers given by the
participants. The communication and motivation skills of the members
of a FLOSS community are fundamental for the proper development of
free software construction projects.

Keywords: FLOSS, software, model, process, open source

mailto:fabian.lara%40upb.edu.co?subject=
https://orcid.org/0000-0001-8246-1852
https://orcid.org/0000-0001-8246-1852
mailto:lesteban%40unipamplona.edu.co?subject=
mailto:lesteban%40unipamplona.edu.co?subject=
https://orcid.org/0000-0002-5724-9136
https://doi.org/10.22395/rium.v22n43a2

2 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

MODELO DE IMPLEMENTACIÓN DE PROCESOS DE SOFTWARE
EN ENTORNOS COLABORATIVOS Y DISTRIBUIDOS TÍPICOS DE

COMUNIDADES DE SOFTWARE LIBRE Y DE CÓDIGO ABIERTO (FLOSS)

Este artículo presenta el desarrollo de un modelo para implementar
procesos de software en el contexto de comunidades de software libre
y de código abierto (FLOSS), caracterizadas por la participación volun-
taria de personas distribuidas geográficamente en diferentes lugares y
con perfiles e intereses diversos en un proyecto de desarrollo de software.
El método Delphi validó el modelo, en el que participaron 15 personas
interesadas en las comunidades FLOSS. Se encontró que el modelo
promueve la comunicación y motivación de los participantes en más del
80% y favorece la participación de nuevos miembros de la comunidad,
según las respuestas dadas por los participantes. Las habilidades de
comunicación y motivación de los miembros de una comunidad FLOSS
son fundamentales para el adecuado desarrollo de proyectos de cons-
trucción de software libre.

Palabras clave: FLOSS, software, modelo, proceso, código abierto

3Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

1. INTRODUCCIÓN

With the rise of the FLOSS movement at the beginning of the first decade of the 2000s,
there was a first division between free software [1] and open source [2]. While the
former was a social movement around a philosophy of freedoms, the latter revolves
around a software development methodology and a business model; however, today,
these two approaches converge into a single concept, thanks to the common point
of the two movements regarding the access to source code as an indispensable element to
achieve freedoms (of the free software movement) and the proper development process
(of the Open Source movement). This common ground led to the unification of the
acronym FLOSS, “Free/Libre Open-Source Software” [3] [4].

Regardless of the origin of these movements, it is clear that it is about software
development. Therefore, it is essential to talk about the process that the different
communities related to these movements use to obtain software products under
the criteria of voluntary cooperation and, in most cases, in a distributed manner,
depending on the location of the team members. On the other hand, any process, not
only in the FLOSS context but generalized, even to industrial contexts, goes through a
series of phases during its life cycle, for which it is necessary to interpret each stage’s
purpose and product.

In this topic, process modeling and tool integration were the main trends. As a
base document for the formulation of the present article, it was found that in [5], the
main research topics related to the software process are structured; in [6], a brief
history and achievements of software process research are presented, as well as the
critical evaluation of the results produced up to that moment. Unterkalmsteiner, in [7],
reviews work related to the variety of process modeling, including the representation
of modeling elements. Ruiz González in [8] makes a study on the integration of pro-
duction and management processes in software projects, presenting some integrated
tools, known as Software Engineering Environments (SEE), whose objective is to
support these processes, leaving as an open problem the integration of the tools in a
single process-oriented environment. Matturro [9] proposes managing the knowledge
and experiences acquired during a software project as the most valuable asset for
organizations in process improvement. Bermon in [10] offers the use of a wiki for the
management of PAL process asset libraries. Rolandsson in [11] presents a study of how
programmers cope with the coexistence of a commercial industrial production mode
(typical of companies) and the cooperative community of the FLOSS context. Ruiz [12]
proposes a framework based on the application of model-driven software engineering
techniques and the integration of information through linked open data, where he
also presents a framework for the deployment and evaluation of software processes.

4 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

Alvertis in [13] proposes a methodology to bridge the gap between customers and
developers as a vital aspect of a successful development project, suggesting the Cloud
Teams platform as a groupware system supporting collaborative software development.
Linaker [14] proposes a Contribution Acceptance Process (CAP) model from which
companies can adopt contribution strategies that align with product strategies and
planning. Ewenike in [15] reviews the development process to assess the factors and gaps
that create the need to improve the collaborative software development process in the
cloud. Considering the above, it can be concluded that the main issues faced by FLOSS
communities are related to collaborative development, communication, quality review,
and process clarity.

Process life cycle

The process life cycle can be organized into the following phases (see Figure 1):
i) the design phase consists of determining the main steps of the process and organi-
zing them into phases, defining precedence relationships, inputs, outputs, tools, and
techniques necessary to develop each of the stages constituting the process in question;
ii) the initial deployment is aimed at launching a process for the first time in a real
context and not an abstract one as in the case of design. This phase includes adequate
documentation of the process and effective communication to the people executing
it; iii) the continuous improvement phase consists of change control of the process,
carried out through continuous monitoring (measurement) of each sub-processes, and
designed in terms of effectiveness and efficiency. This phase is expected to be the
longest in the life cycle to the extent that the process can continue to be improved
without being declared obsolete in the light of technological advances, mainly in the
tools and techniques used by the process; iv) and the retirement phase, which consists
of declaring the obsolescence of the tools and techniques, so that the continuous
improvement processes lose their efficiency and therefore it is more economical to
change the entire process. This occurs mainly in processes in other contexts that
require machinery or physical tools that become inefficient due to wear and tear and
technological evolution. Likely, this retirement stage does not occur in some processes,
such as software development, since they do not depend on physical tools, so it may
happen that a process through continuous improvement changes radically over time,
and therefore, continuous improvement can be seen as a reengineering process, by
including the natural changes of tools and techniques to the rhythm of the advance of
the technologies used in software development.

5Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

Life Cycle

Continuous
improvement

Design Initial
deployment

Retreat

Process reengineering

Figure 1. Life Cycle of a Process
Source: own elaboration

Particularly in software development processes, this same process life cycle can
be interpreted as the knowledge required to make each stage effective (see Figure 2).
The design phase [16] requires an adequate study of existing software life cycle models
according to the needs and types of development projects [17], as well as of the
various methodologies that have proven to be helpful or that have become standard
practice due to effective communication and dissemination processes. It is recommen-
ded the study of formally defined standards such as ISO 12207 [18] and IEEE 1074 [19]
that give clarity to the scopes of the sub-processes in which processes are typically
subdivided, either at the level of a particular project or at the level of an organization
engaged in software development.

Continuous
improvement

(Measurement,
change control)

Design

Lifecycle
models,
methodolo
gies, and
process
standards

Initial
deployment

(Documentati
on and
training)

Retreat

(Lessons
learned,
redefinition of
the context)

Process reengineering

Figure 2. Software development process life cycle.
Source: own elaboration

6 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

The initial deployment stage is based on the ability to unambiguously describe each
of the process’s activities [20], so it is described in terms of roles, activities, tools, and
techniques used in each activity. A second factor in this stage is the training of the people who
will use the process, thus ensuring the usefulness of the documentation since documenting
a process does not imply that people execute the activities as they were defined.

The continuous improvement phase includes evaluating the software process [21],
[22] and is related to quality models. In the academic and business environment, the
CMMI (Capability Maturity Model Integration) model [23], [24], which has proven to
be effective in process improvement at the organizational level, with its descendants
TSP (Team Software Process) [25] at the level of project teams, or PSP (Personal
Software Process) [26], [27] at the level of individual members of software development,
is recognized. Process changes also arise from product quality measurements, so it is
necessary to consider models and standards such as McCall, GQM, FURPS, Dromey,
GILB, ISO 9126, SQAE, WebQEM, and ISO 25000 (see Table 1). Much of the research
links the deployment process to process improvement using the CMMI model.

Table 1. Models and standards for measuring product quality.
Model Description

McCall It is considered one of the pioneers in the evaluation of software quality. Its structure is based on
three levels (factors, criteria, and metrics) and has eleven base criteria: accuracy, reliability, efficien-
cy, integrity, usability, maintainability, testability, flexibility, portability, reusability, and interoperability.

GQM (Goal Question Metric) It provides a way to define metrics based on applying some questions related to the project that
allow the achievement of previously set goals.

FURPS (Functionality, Usability,
Reliability, Performance, and
Supportability)

It is a model developed by Hewlett-Packard, whose name comes from the criteria it evaluates
Functionality, Usability, Reliability, Performance, and Supportability.

Dromey It proposes three models for each stage of the development process: requirements model, design
model, and implementation quality model.

GILB, It guides software evaluation based on workability, adaptability, availability, and usability, which
are divided into sub-attributes.

ISO 9126 It is based on McCall’s model and is organized into four parts: quality model, external metrics,
internal metrics, and quality metrics in use. It also includes the evaluation of characteristics such
as functionality, reliability, usability, efficiency, maintainability, and portability, for each of which it
defines sub-characteristics.

SQAE (Software Quality
Assessment Exercise)

Based on Boehm, McCall, Dromey, and ISO 9126, it is oriented to evaluate by third parties not
directly involved with the development. It is organized into three layers that allow the evaluation to
be taught hierarchically: area, factor, and quality attribute.

WebQEM (Web-site Quality
Evaluation method)

It is a website quality evaluation methodology that follows six phases: planning and programming
of the quality evaluation definition and specification of quality requirements, definition and imple-
mentation of the elementary evaluation definition and implementation of the global evaluation
analysis of results, conclusion and documentation, and validation of metrics.

ISO 25000, Also known as SQuaRE (System and Software Quality Requirements and Evaluation), its purpose
is to guide the development with requirements and evaluation of quality attributes, mainly functio-
nal adequacy, performance efficiency, compatibility, usability, reliability, security, maintainability,
and portability [28].

7Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

As previously mentioned, the retirement process and its subsequent reengineering
phase can be considered non-existent in software development processes, in the sense
that since it does not depend on physical tools, it can undergo drastic changes as part of
continuous improvement; that is, the process initially deployed in an organization can
be very different from the one used at a point in the life cycle, as long as continuous
improvement guarantees the control of changes in the documentation and an effective
process of communication of such changes through training. Therefore, lessons learned
and changing technologies are quickly incorporated into the evolution of a sub-process,
which can be seen as process reengineering in the long term.

Finally, it is vital to highlight the difference that may exist in the contexts of FLOSS
development and proprietary development, in which there is no form of free access to
the source code outside the boundaries of an organization that needs the software
(and develops it) or of an organization that is dedicated to producing software and that
was contracted by the one who needs the product [28]. The difference between these
two contexts [19] lies in the voluntary collaboration and the geographical distribution
of the team members. The first and most important differentiating factor is related to
the attachment of the members to a development team: in the FLOSS context, in most
cases, there is no financial compensation for all team members, while in the proprie-
tary context, there is a contract that in one way or another obliges team members to
comply with the rules defined by the contractor; As for the second factor, today it can
be overcome through the appropriate use of technological tools for teamwork; however,
it has been shown that collaborative work in the same physical space results in both
process and product quality, as is the case of methodologies such as SCRUM [29], [30].

About the above, the question arises: how to develop a model for deploying software
processes within the context of free and open-source software communities FLOSS,
which contributes to improving communication, motivation, and participation of the
people who make them up?

2. PROPOSED MODEL

The proposed model involves the software deployment phase and the design phase,
which must guarantee the usability of the processes defined for a particular community.
The proposed model (see Figure 3) presents three indispensable components to ensure
adequate deployment of processes in a FLOSS community: constraints, techniques, and
tools. The model also includes the particularities of a development context in which
collaboration is voluntary, and its members are geographically distributed. It can be
adapted to the reality of each FLOSS community under its particularities.

8 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

Figure 3. Proposed deployment model
Source: own elaboration

The construction of a solution starts from the design process, which is influenced
by constraints, techniques, and tools that can alter this process. Then, we move on to
the initial deployment process, conditioned by other restrictions, methods, and tools
different from those used in the previous process. In this stage, deliverables are deve-
loped and improved until the minimum viable product is achieved, with continuous
improvement of tests and corrected codes. It is essential to mention that the group of
processes is from the beginning of the process until the desired product is obtained.

2.1 Design
A software process should be seen generally as the whole development process, including
the sub-processes into which it can be divided. Therefore, when talking about the initial
deployment of the process, it is considered for the first time the integral process whose
only product is functional software, which includes the source code, specifications,
designs, and documentation, both for the developers and the software users.

In a FLOSS community, there is an initial version known as “Credible Promise,”
which motivates members to join a project. This initial version of the product did not
apply a community development process, which is why the design of the process will
be a parallel task to the involvement of the first participants [29]. At this point, it is
necessary to form the process group, which may be considered one more role in the
overall development process. Its members will design, document, and give permanent
support to all the other members in the different roles determined.

9Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

2.1.1 Restrictions

The primary constraint of the process design component is the context, considering the
characteristics of the people who will use the process. It is necessary to characterize
this population, which, although not clearly defined at the beginning of the project, can
be predicted depending on the problem domain the project addresses. An essential part
of the context is the geographical distribution of its members, for which the process
must be supported by appropriate communication tools [28].

The following paragraphs describe the most important restrictions:

a. Iterative and incremental: FLOSS development contexts are characterized by
frequent releases, so their design must include appropriate iterative and incremental
development strategies.

b. Design based on roles and not on sub-processes: process documentation notations
and tools allow the global software process description. Due to the great variety of
profiles in the members of a community, these are self-organized according to their
skills, and their linkage is always based on the role they play. Thus, the design of
FLOSS processes must be based on each of the necessary roles: developers, designers,
validators, documenters, and a new role proposed in this model: process engineer.

c. Flexible: the role of process engineer includes among its responsibilities the
measurement and analysis of the processes of each of the roles defined in
a community, so the initial design of the process must consist of aspects that facilitate
changes without suffering traumas within the participants in the role affected by
the change. This could be called process maintainability.

d. Simplicity: minimum necessary and sufficient based on the idea that something
is simple when there is nothing to take away. Processes should be the minimum
required to achieve the participation of the most significant number of stakeholders.

2.1.2 Techniques

The primary technique in process design is the Process Asset Library (PAL), for which
open-access process repositories should be promoted. Just as the source code of a
software product is available, the processes of FLOSS communities must be adequately
documented and freely accessible.

2.1.3 Tools

The Eclipse Process Framework Composer (EPF Composer) is the primary tool for
documenting software processes. With this tool, it is possible to specify the activities

10 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

corresponding to each role, the artifacts generated in those activities, and the tools
used. In addition, the EPF Composer project has a repository of process libraries that
includes documentation for approaches such as OpenUP, Scrum, and XP, which are
freely available. These libraries can be a starting point for documenting proprietary
processes in a FLOSS community. In addition, tools such as WikiPAL [31] have
been proposed as appropriate options for maintaining a process repository.

2.2 Initial Deployment

This model component includes the publication of the process documentation, the training
of team members, and the installation and integration of the tools that support the activities
for each of the roles defined in the previously designed process.

2.2.1 Restrictions

The primary constraint in this aspect corresponds to the legibility of the process, that
is, the ease with which each team member understands the activities of his role and the
use of the tools for the construction of the artifacts under his responsibility.

Integration of tools: Repositories and version control have become the primary
tools for working in FLOSS communities; however, other tools are required, such as
communication tools, forums, bug reporting, testing, and documentation tools, which
must be integrated appropriately to achieve that the members of a community consider
a single context and that with a single access (login) they can access the tools involved
in a given role.

2.2.2 Techniques

The deployment of an initial process is less critical than in the case of code deployment
since the availability of the functionality must be guaranteed in real time. For the
context of this work, it is suggested that the initial deployment be done by diverting
the flow of participation of the most expert users to an instance of the new process.
In this way, a beta test of the process can be considered, and, with their feedback,
the pertinent adjustments can be made to provide service to one hundred percent of the
participants. Training by different means is the primary technique for understanding
each member’s activities, tools, and techniques within a given role. Thus, the process
group must have the corresponding strategies to advise mainly using the tools.

2.2.3 Tools

Collaborative development platforms: Also known as forges. They are mainly
version control tools, in which all kinds of digital documents are registered,
allowing control not only of the source code but also of requirements documentation,

11Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

designs, tests, manuals, and, generally, all kinds of artifacts in a software deve-
lopment process.

Communication between team members: Mailing lists and forums are the primary
tools for communication between members of FLOSS communities. New requirements
are communicated, solution alternatives are discussed, and coding and testing processes are
undertaken through these. This type of tools can also include:

a. Bug Tracking System (BTS), used to register bugs found by users and serve as
a tool for defining requirements, planning, and assigning tasks that constitute a
collaborative development platform when integrated with version control
and communication tools such as mailing lists.

b. Documentation tools: technical manuals (description of designs, requirements,
packages, classes, source code, error codes, and their meanings), user manuals,
and any other documentation that facilitates the modification, use, and operation
of a software product. They constitute a guarantee of the long-term survival of a
FLOSS project.

c. Wiki: this type of tool is probably the most versatile for the FLOSS context since it
could support user documentation processes, documentation of the process itself,
requirements, designs, and even a FLOSS project promotion portal.

2.3 Continuous Improvement

The component is based on managing process changes from measurement processes that
detect parts of a process that can be improved.

2.3.1 Restrictions

In the FLOSS communities, the increments in the product are given as the commits
are registered, which refer to the confirmations of a set of provisional changes in a
permanent way in one or several constituent artifacts of a software product. On these, it
is necessary to make the pertinent analysis in search of aspects that can be susceptible
to improvement. Therefore, the main restriction for process improvement is given
by the artifacts on which information analysis can be performed. Access to commit
information within a community should be unlimited for the process group; however, it
can be more valuable when it is available to anyone through repositories such as
SourceForge Research Data Archive, FLOSSmole, or FLOSSMetrics.

12 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

2.3.2 Techniques

Defect characterization facilitates finding opportunities for improvement and allows
finding the root cause of failures detected in testing processes. The analysis of reverse
commits is fundamental since a large number of inputs in a community need to
be incorporated into the product for different reasons, and studying this information
allows process improvement.

2.3.3 Tools

Data analysis: Statistical and artificial intelligence tools enable the processing of
large volumes of data to find patterns of behavior and identify opportunities to
improve a process.

2.4 Role of Process Engineer

This role within a FLOSS community has the permanent mission of identifying,
analyzing, and proposing solutions to inefficiencies in the development process, mainly
performing the following functions: i) performing permanent analysis on commits to
identify aspects for improvement in the process; ii) helping team members with the
management of the tools in each of the defined roles; iii) helping to understand and
adopt the process defined for the community; and iv) managing process changes,
including the integration of tools and training for community members.

Within the capabilities of the people participating in this role, there should be
skills very similar to those described for agile workgroups, such as self-organization
and collaborative work.

The following methodology illustrates an example of the proposed model:

Design

- Socialize the credible promise in the FLOSS community.

- Invite community members to participate in the construction of the process group.

- Characterize people by their profile and geographic location of the process group

- To develop the appropriate communication tools for the process community

- Determine the roles of the process group

- Determine processes for change management and maintainability in such a way
that they are not complex to implement

- Build open-access repositories

13Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

Initial deployment

- Include publication of process documentation, training of team members, and
installation and integration of tools.

- Analyze the constraints for the process group to understand the activities of their role
and the use of the tools for the construction of the artifacts under their responsibility.

- Determine communications, forums, bug reporting, testing, documentation tools.

- Analyze the work of the most expert users in an instance of the new process.

- Determine the tools for collaborative work

- Socialize documentation tools in the process group.

- Analyze the management of the commits to the process group and the open
access group.

- Characterize the defects and their cause

- Analyze artificial intelligence tools to find error patterns

- Detect new opportunities for improvement in the process group

3. DISCUSSIONS FOR THE VALIDATION OF THE PROPOSED MODEL

Expert judgment is used in this work to validate the hypothesis:¿ Is it possible to
formalize the development process in a FLOSS community in a way that motivates
the participation of novice volunteers in this type of community (variable level of
formalization of the software process)?

3.1 Instruments

The following instrument was designed to measure the suitability or not of using the
model in a FLOSS community, according to the experts’ criteria. The first part of
the instrument collects information on the experience level of each invited to fill
out the instrument. The second part corresponds to the convenience of using the model.

1. Participant’s information:

a) Full name

b) Level of education

c) Occupation

14 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

d) To what degree do you know how a FLOSS community works (basic, medium,
high, very high)?

e) Have you participated in a FLOSS community? if yes, which one? in what role?

2. About the proposed model:
a) The use of the proposed model will motivate the attachment of novice members

in a FLOSS community.
b) The use of the proposed model will motivate the participation of members who

have previous experience in FLOSS communities.
c) The formalization of a process through SPEM, as proposed by the model, will

create dissatisfaction in the members of a FLOSS work team.
d) A critical process when working with virtual teams is that of communications. The

proposed model facilitates the communication process in a FLOSS community.
e) Please leave here any observations and comments you consider relevant regarding

the evaluated model (optional).

This second part of the survey uses a Likert scale. It is named after its author,
Rensis Likert, and is a psychometric scale commonly used in surveys in which the level
of agreement or disagreement with a statement is specified for the response options:

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

5. Strongly agree

4. ANALYSIS OF RESULTS

For the application of the instrument, the experts used a summary of the proposed
model and the online instrument, which was also presented in printed format to know
the questions in advance without the need to visit the digital version. Fifteen expert
participations were obtained with the following characterization.

Current profession: The experts reported a varied profile, among which are:
systems engineering student, systems engineer, academic secretary, development
leader, teacher, systems engineer, computer engineer, electronic engineer, business
intelligence consultant, head of information and communication technology
center, information technology office manager, information security officer.

15Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

Highest level of academic training obtained so far. Most participants have a pro-
fessional degree, which allows us to deduce that their concepts are based on the theory
they acquired in their undergraduate academic program rather than their experience
in FLOSS communities (see Figure 4).

0
1
2
3
4
5
6

Figure 4. Academic level of participants
Source: own elaboration

¿To what degree do you know how a FLOSS community works? Most of the
participants have a basic knowledge of FLOSS communities, which only partially
guarantees the viability of the application of the model, so it is necessary to get concepts
from members involved in FLOSS development processes (Figure 5).

0
1
2
3
4
5
6
7
8
9

10

Low Medium High Very High

Figure 5. Participants’ knowledge of FLOSS communities.
Source: own elaboration

16 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

¿Have you participated in a FLOSS community? The low participation in FLOSS
communities coincides with the low knowledge about the internal development
processes in this type of community (Figure 6).

0

2

4

6

8

10

12

14

No Yes

Figure 6. About the participation of experts in FLOSS Communities.
Source: own elaboration

Considering the evaluation of the proposed model by the experts, the analysis of
the answers to the questions posed in the instrument is presented below:

¿Using the proposed model will motivate the linkage of novice members in a FLOSS
community ?(Figure 7). The implementation of the model is feasible since the success
of a FLOSS community depends mainly on the number of participants. Although
several decades have passed since the movement started, many people interested in
participating in a community for the first time find an obstacle in understanding the
internal process, even more so when they do not have computer science as a profession.

¿Using the proposed model will motivate the participation of members with previous
experience in FLOSS communities ?(Figure 8). According to the results, it is feasible
to implement the model since it does not prevent users with previous experiences in
FLOSS communities from perceiving the documentation of a process as a loss of
freedom in their way of developing or participating in the community.

The formalization of a process through SPEM, ¿ as proposed by the model, will
create discomfort in members with experience in FLOSS teamwork? (Figure 9). The
documentation of processes through symbolic notations facilitates their understanding,
regardless of the language; thus, experienced members will have the opportunity to
assimilate changes in a strategy quickly and will not see in this notation an imposition
that hinders the freedom of participation in a community.

17Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

0

1

2

3

4

5

6

7

8

Strongly
disagree

Disagree Neither
agree nor
disagree

Agree Strongly
Agree

Figure 7. The model will encourage the participation of novices in a FLOSS Community.
Source: own elaboration

0

1

2

3

4

5

6

7

8

9

Strongly
disagree

Disagree Neither
agree nor
disagree

Agree Strongly
Agree

Figure 8. The model will encourage the participation of expert members in a FLOSS Community.
Source: own elaboration

18 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

0

1

2

3

4

5

6

7

8

9

Strongly
disagree

Disagree Neither
agree nor
disagree

Agree Strongly
Agree

Figure 9. Formalization with SPEM will create dissatisfaction among the members of a FLOSS community.
Source: own elaboration

A critical process when working with virtual teams is that of communications.¿The
proposed model facilitates the communication process in a FLOSS community ?
(Figure 10). Most participants agree that it facilitates communication within a
development process. It is highly probable that if all team members have the same
understanding, their communication channels will be determined.

0

1

2

3

4

5

6

7

8

Strongly
disagree

Disagree Neither
agree nor
disagree

Agree Strongly
Agree

Figure 10. The model will facilitate the communication process
Source: own elaboration

At the end of the instrument, comments, and observations each expert considered
pertinent concerning the model evaluated were allowed to be recorded. These are the
comments recorded:

19Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

- “The model can be adapted to changes.”

- “The characterization should have a minimum number of people to take into account
in the model; in turn, there is no clarity on the tools to be used for integrating
collaborative work tools and platforms is very open options.”

- “In the proposed model, it needs to be clarified how the activities are classified
according to their priority, the estimated time to be completed, what dependencies
it has on other activities, and how they are monitored according to the individual
assigned to it.

It should be clarified that, for this point, the model does not focus on estimating
the activities and monitoring of each individual in the FLOSS community since this
orientation is given by the group of experts and the process engineer of each free
software community.”

- “It is adequate and relevant as the roles within the community are defined well.”

- “The proposed model defines some roles of the work team. The initial software
product is known as Credible Promise. The design proposes the conformation of a
group of processes with members designing, documenting, and providing permanent
support to all the other members of the different roles.”

- “The model allows designing and documenting software development processes
in a graphical and standard-compliant manner considering the roles defined in the
tasks and activities, work products or artifacts, tools, and processes.”

- “It can be supported with DevOps”

- “I consider it would be useful to briefly describe the current process to better
understand the proposed model’s advantages, comparing these two.”

The comments generally ref lect the feasibility of applying the model
since some focus on evaluating the summary document, not the model itself. The nega-
tive comments refer to the process design rather than the deployment, so the model does
not describe the specific development activities. Instead, it proposes a process design
phase in which the particular activities and the roles, tools, and artifacts in SPEM
notation should be specified.

CONCLUSIONS

The software process deployment model proposed for FLOSS communities goes
beyond the limits of deployment, so it was necessary to incorporate a process design

20 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

phase in recognition of the particularities concerning business processes, where
the participants in the work team have total control. Thus, the voluntary nature of
FLOSS development requires that the process be agreed upon among the initial
community members without overloading it with activities that discourage the
participation of a wide variety of profiles interested in a particular FLOSS project.

The validation process shows the feasibility of using the model; however, the
academic and theoretical nature of the evaluations does not guarantee the success
of applying the model in a specific context. In any case, knowing a process in advance
motivates the voluntary participation of stakeholders in a FLOSS project.

It is important to note that the model encourages communication and motivation
of participants by obtaining more than 80% favorability for these aspects. Likewise,
the participation of new members is strongly encouraged, with a favorability of
more than 60% of those surveyed. Therefore, the development of FLOSS communities
could benefit significantly from using the model since commitment, motivation, com-
munication, and knowledge are human capabilities that encourage the construction of
new inventions and technological challenges.

Future research could be developed to analyze the impact of artificial intelligence
on the growth of FLOSS communities and the development of agile methodologies
within them.

REFERENCES
[1] R. Stallman, “LA DEFINICION DE SOFTWARE LIBRE,” COMMUNIARS, vol. 3, 2020,

Accessed: Dec. 02, 2022. [Online]. Available: https://revistascientificas.us.es/index.php/
Communiars/article/view/12773

[2] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology & Policy, vol. 12, no.
3, pp. 23–49, 1999, doi: 10.1007/s12130-999-1026-0.

[3] E. S. Raymond et al., “Twenty Years of Berkeley Unix: From AT&T-Owned to Freely
Redistributable OPENSOURCES Voices from the Open-Source Revolution,” 1999. Accessed:
Dec. 02, 2022. [Online]. Available: https://www.oreilly.com/openbook/opensources/book/

[4] Y. Puma Enríquez, W. López Abanto, Y. Mamani Laura, D. Lozano Flores, and J. A. Nuñez
Muñoz, “Uso de software libre y de código abierto para la identificación de lineamientos
estructurales y realce de estructuras geológicas,” Revista del Instituto de investigación de la
Facultad de minas, metalurgia y ciencias geográficas, vol. 24, no. 48, 2021, doi: 10.15381/
iigeo.v24i48.20414.

[5] E. C. Forrester, “A Process Research Framework: The International Process Research
Consortium,” 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:107917513

https://revistascientificas.us.es/index.php/Communiars/article/view/12773
https://revistascientificas.us.es/index.php/Communiars/article/view/12773
http://doi.org/10.1007/s12130-999-1026-0
https://www.oreilly.com/openbook/opensources/book/
http://doi.org/10.15381/iigeo.v24i48.20414
http://doi.org/10.15381/iigeo.v24i48.20414
https://api.semanticscholar.org/CorpusID:107917513

21Deployment model for software processes in collaborative and distributed environments typical of Free and Open-Source...

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

[6] A. Fuggetta, “ICSE ’00: Proceedings of the Conference on The Future of Software Engi-
neering,” New York, NY, USA: Association for Computing Machinery, 2000.

[7] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. Cheng, R. Permadi, and R. Feldt, “Evaluation
and Measurement of Software Process Improvement—A Systematic Literature Review,”
IEEE Transactions on Software Engineering, vol. 38, pp. 398–424, Jul. 2011, doi: 10.1109/
TSE.2011.26.

[8] G. Canfora and F. Ruiz González, “Procesos Software características, tecnología y entornos,”
Revista de la Asociación de Técnicos de Informática, 2004.

[9] M. Matturro and S. Vázquez, “Modelo para la gestión de conocimiento y la experiencia
integrada a las prácticas y procesos de desarrollo de software,” Universidad Politécnica de
Madrid, 2010.

[10] L. Bermón Angarita, “Librería de activos para la gestión del conocimiento sobre procesos
software: PAL-Wiki,” Nov. 2010, Accessed: Jul. 28, 2023. [Online]. Available: https://e-
archivo.uc3m.es/handle/10016/10231

[11] B. Rolandsson, M. Bergquist, and J. Ljungberg, “Open Source in the Firm: Opening Up
Professional Practices of Software Development,” Res Policy, vol. 40, pp. 576–587, Jul. 2011,
doi: 10.1016/j.respol.2010.11.003.

[12] I. Ruiz Rube, “Un framework para el despliegue y evaluación de procesos software,”
Universidad de Cádiz, 2013.

[13] I. Alvertis et al., “User Involvement in Software Development Processes,” Procedia Comput
Sci, vol. 97, pp. 73–83, Jan. 2016, doi: 10.1016/J.PROCS.2016.08.282.

[14] J. Linåker, H. Munir, K. Wnuk, and C. E. Mols, “Motivating the contributions: An Open
Innovation perspective on what to share as Open-Source Software,” Journal of Systems and
Software, vol. 135, pp. 17–36, Jan. 2018, doi: 10.1016/J.JSS.2017.09.032.

[15] S. Ewenike, E. Benkhelifa, and C. Chibelushi, “Cloud Based Collaborative Software
Development: A Review, Gap Analysis and Future Directions,” Jul. 2017, pp. 901–909. doi:
10.1109/AICCSA.2017.220.

[16] S. Acuña and X. Ferre, “Software Process Modelling,” Dec. 2001, pp. 237–242. doi:
10.1142/9789812389718_0011.

[17] P. Mukala, A. Cerone, and F. Turini, “An abstract state machine (ASM) representation of
learning process in FLOSS communities,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015.
doi: 10.1007/978-3-319-15201-1_15.

[18] B. Mutafelija and H. Stromberg, Process Improvement with CMMI® v1.2 and ISO Standards.
Auerbach Publications, 2008. doi: 10.1201/9781420052848.

http://doi.org/10.1109/TSE.2011.26
http://doi.org/10.1109/TSE.2011.26
https://e-archivo.uc3m.es/handle/10016/10231
https://e-archivo.uc3m.es/handle/10016/10231
http://doi.org/10.1016/j.respol.2010.11.003.
http://doi.org/10.1016/J.PROCS.2016.08.282
http://doi.org/10.1016/J.JSS.2017.09.032
http://doi.org/10.1109/AICCSA.2017.220
http://doi.org/10.1142/9789812389718_0011
http://doi.org/10.1007/978-3-319-15201-1_15
http://doi.org/10.1201/9781420052848

22 Fabian Alonso Lara Vargas y Luis Alberto Esteban Villamizar

Revista Ingenierías Universidad de Medellín, 22(43) Julio-Diciembre de 2023 • pp. 1-22 • ISSN (en línea): 2248-4094

[19] J. Castro and S. Acuña, “Differences between Traditional and Open-Source Development
Activities,” in Product-Focused Software Process Improvement, 2012, pp. 131–144. doi:
10.1007/978-3-642-31063-8_11.

[20] M. Alshakhouri, J. Buchan, and S. G. MacDonell, “Synchronized visualisation of software
process and product artefacts: Concept, design and prototype implementation,” Inf Softw
Technol, vol. 98, pp. 131–145, 2018, doi: https://doi.org/10.1016/j.infsof.2018.01.008.

[21] I. Ruiz, R. Director, J. Manuel, and D. Beardo, “Un framework para el despliegue y
evaluación de procesos software,” 2013. Accessed: Dec. 02, 2022. [Online]. Available:
https://rodin.uca.es/bitstream/handle/10498/15725/Ph.D.%20Iv%C3%A1n%20Ruiz-Rube.
pdf?sequence=1&isAllowed=y

[22] D. Spinellis et al., “Evaluating the Quality of Open-Source Software,” Electron Notes Theor
Comput Sci, vol. 233, pp. 5–28, 2009, doi: https://doi.org/10.1016/j.entcs.2009.02.058.

[23] “Capability Maturity Model ® Integration (CMMI SM), Version 1.1 Product and Process
Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1) Continuous Represen-
tation Improving processes for better products,” 2002. Accessed: Dec. 02, 2022. [Online].
Available: https://resources.sei.cmu.edu/asset_files/technicalreport/2002_005_001_14039.pdf

[24] C. Product Development Team, “CMMI for Systems Engineering/Software Engineering,
Version 1.02, Continuous Representation (CMMI-SE/SW, V1.02, Continuous),” 2000.
[Online]. Available: http://www.sei.cmu.edu/publications/pubweb.html

[25] N. Davis and J. Mullaney, “The Team Software Process SM (TSP SM) in Practice: A Summary
of Recent Results,” 2003. Accessed: Dec. 02, 2022. [Online]. Available: The Team Software
Process SM (TSP SM) in Practice: A Summary of Recent Results,” 2003

[26] W. S. Humphrey, “Personal Software Process (PSP),” in Encyclopedia of Software Enginee-
ring, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002. doi: 10.1002/0471028959.sof238.

[27] M. Azzeh, A. B. Nassif, Y. Elsheikh, and L. Angelis, “On the value of project productivity
for early effort estimation,” Sci Comput Program, vol. 219, p. 102819, 2022, doi: https://doi.
org/10.1016/j.scico.2022.102819.

[28] F. Zambrano, N. Patiño, and F.-J. Pino-Correa, “Apoyando el despliegue de procesos en el
contexto de las pequeñas organizaciones software,” Revista Científica, vol. 43, no. 1, 2021,
doi: 10.14483/23448350.18351.

[29] J. Gabriel, “Pequeñas empresas de software libre (floss) en la argentina,” XVII Congreso
Latino-Iberoamericano de Gestión Tecnológica - ALTEC, 2017, Accessed: Dec. 02, 2022.
[Online]. Available: https://repositorio.altecasociacion.org/handle/20.500.13048/1551

[30] E. R. B. Cutler, J. Gothe, and A. Crosby, “Design Microprotests,” M/C Journal, vol. 21, no.
3, Aug. 2018, doi: 10.5204/mcj.1421.

[31] L. Bermón Angarita, “Librería de activos para la gestión del conocimiento sobre procesos
software: PAL-Wiki,” Nov. 2010, Accessed: Dec. 02, 2022. [Online]. Available: https://e-
archivo.uc3m.es/handle/10016/10231

http://doi.org/10.1007/978-3-642-31063-8_11
https://doi.org/10.1016/j.infsof.2018.01.008
https://rodin.uca.es/bitstream/handle/10498/15725/Ph.D.%20Iv%C3%A1n%20Ruiz-Rube.pdf?sequence=1&isAllowed=y
https://rodin.uca.es/bitstream/handle/10498/15725/Ph.D.%20Iv%C3%A1n%20Ruiz-Rube.pdf?sequence=1&isAllowed=y
https://doi.org/10.1016/j.entcs.2009.02.058
https://resources.sei.cmu.edu/asset_files/technicalreport/2002_005_001_14039.pdf
http://www.sei.cmu.edu/publications/pubweb.html
http://10.1002/0471028959.sof238
https://doi.org/10.1016/j.scico.2022.102819
https://doi.org/10.1016/j.scico.2022.102819
http://oi.org/10.14483/23448350.18351
https://repositorio.altecasociacion.org/handle/20.500.13048/1551
https://e-archivo.uc3m.es/handle/10016/10231
https://e-archivo.uc3m.es/handle/10016/10231

	_Ref144375377
	_Ref144375463
	_Ref144375514
	_Ref144376294
	_Ref144376647
	_Ref144376854
	_Ref144448107

