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ABSTRACT

This article is the result of a research on the propagation of electromagnetic 
waves in a plasma found confined in a cylindrical metal structure through an intense 
axial magnetic field. The eigenvalue problem resulting from this study is numerically 
solved and frequencies of the first electromagnetic modes are obtained. Results of 
this work could be applied to characterize plasmas at the laboratory. 
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SOLUCIÓN NUMÉRICA DE UN PROBLEMA DE VALORES 
PROPIOS PARA UN PLASMA ACOTADO

RESUMEN

En este artículo investigamos  la propagación de ondas electromagnéticas en un 
plasma que se encuentra  confinado en una estructura metálica cilíndrica  a través 
de un intenso campo magnético axial. Resolvemos numéricamente el problema 
de valores propios que proviene de este estudio y obtenemos las frecuencias de los 
primeros modos  electromagnéticos. Los resultados de este trabajo podrían tener 
aplicaciones  en caracterización de plasmas a nivel de laboratorio.

Palabras clave: física del plasma – ondas electromagnéticas  – problemas de 
valores propios
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INTRODUCTION
The theoretical study of the propagation of 

electromagnetic waves in a Plasma system is one 
of the most fundamental problems in Plasma 
Physics [1].  This study requires the knowledge 
of the macroscopic response of the plasma to 
the presence of electromagnetic fields [2].  This 
information is contained in the structure of 
physical quantities such as the dielectric function, 
the electrical conductivity and the current density. 
The theoretical derivation of these macroscopic 
quantities is based in kinetic microscopic models of 
the plasma matter which provide this information 
through statistical averages of the corresponding 
microscopic quantities.

With the knowledge of the macroscopic 
response, the electromagnetic boundary conditions 
and under an assumption of the electromagnetic 
fields structure is possible obtain an eigenvalue 
problem for the system. The solution of this 
problem gives the natural frequencies (eigenvalues) 
with the corresponding wavenumbers of the 
electromagnetic waves (eigenvectors or eigenmodes) 
propagating in the system. From the behavior of the 
eigenfrequencies as a function of the wavenumber 
(dispersion relation) is possible to calculate 
important quantities such as the phase and group 
electromagnetic wave velocities. These quantities 
allow to calculate the speed of the electromagnetic 
energy propagation through the system [3]. In 
addition from the dispersion relation is possible 
obtain relevant information of the plasma such as 
the temperature and the density.

The laboratory plasmas are generally confined 
by strong magnetic fields inside  metallic structures 
[4]. Therefore, the solution of the eigenvalue 
problem in this case  involves the solution of partial 
differential equations for the electromagnetic 
fields which must satisfy the boundary conditions. 
In this paper we concentrate in the study of the 
propagation of electromagnetic waves in a fully 
ionized plasma, which is confined inside a metallic 
cylindrical structure through a strong axial magnetic 

field [5-9]. This kind of studies can be useful as a 
plasmas characterization tool. The reason for the 
latter is that the dispersion relation depends on 
relevant macroscopic quantities such as the plasma 
temperature and the plasma density profile [4]. 
Several works have studied the dispersion relation 
of bounded plasmas for different conditions. In 
Ref. [5] the authors calculate the dispersion relation 
of a toroidal waveguide in the presence of a plasma 
column. In this case, the solution of the equations 
uses an analytical approximation method where the 
curvature of the axis of the waveguide is considered 
as a disturbance parameter to the straight circular 
cylinder approximation. Thus, the perturbed  
equations lead to the dispersion relation. On the 
other hand in Ref [6] the dispersion characteristics of 
electrostatic modes in a longitudinally magnetized 
parallel plate waveguide completely filled with 
a transversely inhomogeneous cold collisionless 
electron plasma are examined. In Ref. [7] the 
electrostatic hybrid resonance oscillation modes 
are investigated in semi-bounded magnetized dusty 
plasmas. There, it is found that the frequencies for 
the electrostatic upper- and lower-hybrid resonance 
oscillations are independent of the orientation of 
the applied magnetic field. In addition, the hybrid 
resonance frequencies are found to decrease as we 
increase the ratio of the electron plasma frequency 
to the electron cyclotron frequency. In Ref. [8] the 
dispersion relation for helicon waves in a uniform 
bounded plasma is derived by including the finite 
electron mass. The eigenmodes are identified and 
the study is related with the application of helicon 
waves for the generation and heating of plasmas. In 
Ref. [9] by using a quantum hydrodynamic model 
for bounded three-component quantum plasmas 
the dispersion relation for the bounded wave in 
quantum electron-ion-dust plasmas is obtained 
by carrying out a normal mode analysis. In Ref. 
[10] the effects of electromagnetic plane waves 
obliquely incident on a warm bounded plasma 
slab of finite length are studied by solving the 
coupled Vlasov–Maxwell set of equations. In Ref. 
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[11] dust ion-acoustic surface waves propagating 
on the interface between a vacuum and a semi-
bounded Lorentzian (kappa) plasma are kinetically 
investigated. In Ref. [12]  the propagation of the 
TE-surface waves on a semibounded quantum 
plasma is investigated by using the system of 
generalized quantum hydrodynamic (QHD) model 
and Maxwell›s equations. 

Taking into account this context, the main 
body of the paper is organized as follows. In Sec. 
2 we explain the basis of the physical model and 
establish the corresponding eigenvalue problem to 
study the propagation of the electromagnetic waves.  
In Sec. 3 we show and discuss the numerical results 
of this work.  Finally, we give the main conclusions 
of our research.

1.  PHYSICAL DESCRIPTION, BASIC 
EQUATIONS AND EIGENVALUE 
PROBLEM

In this section we describe the physical system 
and the main assumptions of our model  and show 
the basic equations which leads to the eigenvalue 
problem which will be solved in the next section. 
The physical system is a fully ionized plasma 
composed by electrons and ions inside of an axially 
infinite metallic cylinder. This plasma is confined 
in a cylinder of radius a  through a strong axial 
magnetic field.  We consider the plasma to be 
radially inhomogeneous but axially symmetric [7]
[13-17]. We consider that the magnitude of the field 
is such that the cyclotron radius of the particles 
is much less than the cylinder radius. Therefore, 
we neglect the transverse motion and restrict the 
particles motion to the axial direction z. In this 
case the dynamics of particles of specie α  can 
be described by a distribution function which is 
one-dimensional in the velocity space of the form:

( ) ( )2, ,  , ,parall perpf v t d v f tα α= ∫x x v

where   ̂   parall z perpv e= +v v  is the tridimensional 
particle velocity with parallv  the parallel speed 

to the magnetic field direction z and perpv  the 
perpendicular velocity to this direction.., In order 
to  simplify our notation  in what follows we set  

.parallv v≡
Due to the mass differences between the 

electrons and ions we consider a range of 
frequencies that allows neglect the response of 
the ions and consider only the dielectric response 
of the electrons. Thus, the role of the ions is 
neutralizing the total charge of the system. Taking 
into account all the previous considerations we 
obtain the linearized Vlasov-Maxwell system of 
equations which describe the dynamics of this  
system [18]:

 ( )1 1 0
0 1

   ,z
f f q fv g r E
t z m v
α α α α

α
α

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (1)

 1 14 (0) ,n q f dvα α α
α

π∇⋅ = ∑ ∫E  (2)

 1
1 1

1 4 x   (0)  ,n q f dv
c t c α α α

α

π∂
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∂ ∑ ∫
EB v  (3)

 1
1

1 x  0,
c t

∂
∇ + =

∂
BE  (4)

 
1  0,∇ ⋅ =B   (5)

where qα  is the electric charge of particles 
of specie  α=  electrons, ions,  0 1f f fα α α= +  is 
the corresponding distribution function with  

1 0f fα α  a small perturbation around the 
equilibrium distribution function

 ( ) ( )0 0 0, ( ) ,f r v g r F vα α α=   (6)

with ( )
( )
( )0 0

n r
g r

n
α

α
α

=  giving the equilibrium 

radial plasma number density profile ( )n rα  for 
particles of specie α  relative to the number density 
evaluated at the center of the cylinder ( )0 .nα  
If the plasma is distributed homogeneously in 
the cylinder ( )0 1,g rα =  otherwise ( )0g rα  is an 
arbitrary function of the radius r.  On the other 
hand ( )0 F vα  is the Maxwell-Boltzman distribution 
function for the axial particle velocities.
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In Eqs. (1-5) the electromagnetic fields have 
been linearized as 0 1, zB B B= +e




   with 0B  a strong 
axial equilibrium magnetic field and the electric 
field  as 1,E E=

 

 where 1 0 ,B B  and 1E  are small 
perturbations.  The strong axial magnetic field 
promotes that the electrons to move preferentially 
along the cylinder axis, thus, the Transverse electric 
modes (TE) which have the electric field confined 
to the transversal plane are not modified by the 
plasma presence respect to that structure in a 
vacuum cylinder. Thus, we restrict our study only 
to the Transverse Magnetic modes (TM) which 
are modified by the plasma presence.  From the 
structure of the Eqs. (1-5) is possible to show that 
all the components of the electromagnetic field in a 
TM mode can be obtained from the knowledge of 
only the axial electric field component [19].  Thus, 
and according to the cylindrical geometry of the 
system we expand the axial electric field as

 
( ) ( )l nn m ml

zm m
l 1 m 1 ml

2J (P r)E r A (k) ,
J (X )a

∞

= +

= ∑  (7)

where ( )l n
m A (k)  are the expansion coefficients 

which define the electric field structure for the 
transverse magnetic mode TM mn  with the 
indices ,m n  being the azimutal and radial number 
respectively.  ( )mJ X  are the Bessel functions of 
first specie and order m , and mlP  is the radial 
wavenumber which is obtained from the boundary 
condition ( )m J 0mlP a =  (perfect conductor at the 
cylinder walls [19]), thus  ml mlP a X= and mlX  are 
the zeros of the equation ( )mJ X 0.=  Introducing 
the above expansion in the Eqs. (1-5) and 
considering harmonic propagating fields with 
angular frequency   ω   and axial wavenumber

2  k π
λ

=  with λ  the wavelength, we obtain the 
eigenvalue problem for this system:

 ( ) ( ) ( ) ( ), n n
m m mn mk k g k kω ⋅ =G A A ,  (8)

where ( )mng k  are the eigenvalues, ( )n
m kA   

the corresponding eigenvectors and the matrix   
( ),  m k ωG is defined in terms of the auxiliar matrix 
( ) ( ) ( ), ,   1.m mnk k g kω ω= −mQ G  Thus, for each  k  it 

is neccessary to find the eigenfrequencies ( )mn kω  
that satisfy the Eq. (8).  The elements of the matrix 

( ) ,  m k ωQ are given by 

( ) ( )

,

,

'2 2 2

2 22 2 2 2

( ), ,
2

ll
em

m ll
deml

C Zc kk
kc k X
βω

ω δ
λω

  −  ≡ −  + −   
Q   (9)

where we have introduced the dimensionless 
variables 

 (0)pe

ω
ω
ω

=  the angular frequency 

normalized by the electrons plasma frequency 
evaluated at the center of the cylinder,  k ka=  the 
wavenumber normalized by the cylinder radius, 

 (0)de
de a

λλ =  the Debye length for the electrons 

which depends on the plasma temperture [1],

 

 ,
(0)pe

cc
aω

=   ' ( )Z β  is the first derivative of the 

Plasma dispersion function [20], 
1

2 de
k
ωβ

λ
=   and 

the eigenvalues which contain the eigenfrequencies 

( )mn kω  are given by ( )
2 2

'

2 
( ) 

de
mn

kg k
Z

λ
β

=  

2. NUMERICAL RESULTS

In this section we calculate numerically the 
eigenfrequencies of the first three modes given by 
Eq.(8). To achieve this goal we use the numerical 
method developed by Serizawa [21]. The basis of this 
method are explained in Appendix. We focus our 
numerical analysis in the symmetrical modes, i.e, 
TM01, TM02, TM03 .  We use the inhomogeneuous 
radial densit y profile for the electrons as

( )0 2

1  .
31

eg r
r

a

=
 +   

 This inhomogeneous density 

profile adjusts well the profile measured in the 
classic experiment of Malmberg and Wharton [4] in 
which they studied experimentally the propagation 
of waves in a long cylinder with a confined plasma 
on it. The numerical calculations were done with 
the parameters of the Malmberg and Wharton 
experiment 0.03deλ =  and 6.89c =  and we used 
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for the solution of Eq. (9) the numerical methods 
developed in Refs. [21-22]. For our calculations 
we selected the size of the matrix Eq.(9) as 
15x15. We found numerical differences with the 
eigenfrequencies obtained with the matrix 14x14 
of  order 510 .−  

For each k  we found the presence of two 
modal branches ( )0  n kω  One of them is a low 
frequency mode ( 1ω ) while the other one 
is a high frequency mode ( 1).ω  In Fig. 1 we 
show the numerical results for the first three 
low and high frequency modes (full line)  and 
we compare the results with those modes arising 
from a homogeneous plasma, i.e. ( )0 1eg r =  
(dashed line). We observe from this figure that 
the low-frequency modes for the inhomogeneous 
case (full line) are lower than the corresponding 
ones for the homogeneous case (dashed line). 
This can be explained taking account that in the 
inhomogeneous case the effective density across 
the cylinder decreases respect to the homogeneous 
case which completely fills the entire cylinder. In 
addition for small wave-lengths compared with the 
cylinder radius ( 1ka ) the plasma ignores the 
boundaries, thus, the behavior must correspond 
to a not bounded plasma. It is well known that 
for not bounded plasma case the frequencies of 
the low frequency waves (electrostatic waves) are 
proportional to the plasma density [1, 5]. 

On the other hand, in Fig. 2 we compare the 
TM01 low-frequency mode for the inhomogeneous 
case (full line) with the corresponding results 
obtained in the Malmberg and Wharton experiment 
(circles) and we observe a good agreement between 
the two curves. This is a strong verification of our 
numerical method and in general of our physical 
model.

In Figs 3-4 we show the same modes than before 
but now for the high frequency electromagnetic 
waves. We observe that in all the cases the presence 
of a cutoff frequency in the limit 0.ka →  For 
these modes, the waves with frequencies lower 
than this cutoff are forbidden. In addition in Fig. 

3 we observe that for high frequencies the phase 
velocity (

k
ω

) of the waves tends to the light speed 
at vacuum. This fact is expected since in this 
regime of frequencies  the waves ignores the plasma 
presence.

3 SUMMARY AND CONCLUSIONS 

We found numerically the eigenfrequencies 
of the first symmetrical transverse magnetic 
modes TM0n modes in a radially inhomogeneous 
plasma confined in a cylinder through a strong 
magnetic field. To describe the dynamics of the 
system we used the Vlasov-Maxwell system of 
equations. We expanded the electromagnetic fields 
in an orthonormal basis which lead to find the 
eigenvalues of a matrix whose elements depend on 
the radial density profile, the  plasma temperature 
and the cylinder radius. We solved numerically this 
eigenvalue problem and we found the presence of 
two main modal branches. One of these branches is 
a low-frequency mode with frequencies much lower 
than the natural plasma frequency ( 1

(0)pe

ω
ω

 ) 

and the high frequency mode corresponds to the 
opposite regime ( 1).

(0)pe

ω
ω

  We found that for 

the high frequency mode the phase speed of the 
waves  tends to the light speed velocity at vacuum. 
This is reasonable since for this high frequency 
range  the waves ignores the presence of the plasma.  
We found that for the low frequency mode the 
plasma inhomogeneity produces a decrease of 
the frequencies respect to the homogeneous case. 
This can be explained taking account that for 
small wavelengths compared with the cylinder 
radius ( 1ka ) the plasma ignores the boundaries, 
thus, the behavior must correspond to an infinite 
plasma medium on which the frequencies of 
the low frequency waves (electrostatic waves) are 
proportional to the plasma density.  In addition, 
we compared the numerical results of the first 
electrostatic mode with experimental measurements 
and we found a good agreement. This comparison 
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gives validity to our numerical methods and also to  
the physical model and assumptions.  The elements 
of the matrix Eq. (9) depend on the density an 
plasma temperature through the electron Debye 
length. Thus, an experimental measurement of 
the frequencies of the propagating waves as was 
done by Malmberg and Wharton can be used as a 
characterization tool [16].  A precise information of 
parameters as the temperature and density can be 
crucial to improve the efficiency of plasma assisted 
processes which  are used in materials technology, 
for instance, in material hard coating processes.

APPENDIX. NUMERICAL METHOD

In this work we solve the eigenvalue problem  
given by Eq. (9) which can be written as

 
( )

2-1
-

xeZ dx
x

ξ
ξπ

∞

−∞

= ∫
  (10)

For each  k we need to find the corresponding  
w (k), these values must satisfy the above equation. 
Thus, we solve the generic martricial system: 

  ( ) ( ), 0Q k A kω ⋅ =                                                          (11)
According to  Serizawa [21] we divide Eq. (11) as 

( ) 0 B Xω ⋅ =                                             (12)

( ) ( )1 0P B Xω− ⋅ ⋅ =                                                                 (13)
where P is a proyection operator of N grade
To obtain w and X we make a Taylor expansion 

around given values w0 and X0 as follows 

 w  = w 0 + w 1 (14)

 0 1  X X X= +  (15)

The above procedure leads to a matrix system 
of equations that we solve for w and X. 

On the other hand, the eigenvalue problem 
of Eq. (9) requires the knowledge of the Plasma 
dispersion Function [20].  This function is defined by

( )
2-1

-

xeZ dx
x

ξ
ξπ

∞

−∞

= ∫                                                 (16)

for Im(x) > 0 and can be defined  for Im(x) < 0 
by analytic continuation. Some useful relations are:

 ( ) ( )´ -2[1  ]Z Zξ ξ ξ= +  (17)

 ( ) ( ) ( )'́ 2[  ´ ]Z Z Zξ ξ ξ ξ= − +  (18)

The numerical calculation of Z(x) is based on 
Ref.(21) where the residue theorem of the complex 
variable theory is used.

ACKNOWLEDGMENTS

JH thanks Alfonso Devia and Carlos Diaz for 
useful physical discussions around this research. 
JH thanks the hospitality of Laboratorio de Física 
del Plasma at Universidad Nacional de Colombia, 
Sede Manizales. This manuscript was elaborated 
as part of the research shock plan of the University 
of Medellín 2009–2010 and the research project 
“Campos Magnéticos” (University of Medellin 
project Identification Number: 530).

REFERENCES
[1] N. A. Krall, y  A. W. Trivelpiece, Principles of Plasma 

Physics, New York: McGraw-Hill, Inc, 1973, 674 p.
[2] S. Ichimaru, Basic Principles of Plasma Physics: A 

Statistical Approach, Massachusetts: Bejamin Reading, 
Inc, 1973, 324 p.

[3] V. L. Ginzburg, The propagation of Electromagnetic 
Waves in Plasmas, 2 ed., Oxford, New York: Pergamon 
Press, 1970, 615 p.

[4] J. H. Malmberg, y  C. B. Wharton, “Dispersion of 
Electron Plasma Waves,” Phys.Rev.Letts, vol. 17, no. 
4, pp. 175-178, 1966.

[5] F. M. Aghamir et al., “Dispersion Characteristics of 
a Plasma Column in a Toroidal Waveguide,” IEEE 
Transactions on Plasma Science, vol. 39, no. 5, pp. 
1204 - 1212, 2010.

[6] P. d. Santis, y  G. Franceschetti, “Dynamic Modes in 
Open Gyromagnetic Waveguides,” Journal of Applied 
Physics, vol. 43, no. 4, pp. 513-515, 1973.

[7] C.-G. Kim, y  Y.-D. Jung, “Electrostatic hybrid resonance 
modes in semi-bounded magnetized dusty plasmas ” 



186 Jaime H. Hoyos; Carlos A. Rodríguez

Universidad de Medellín

Journal of Physics D: Applied Physics, vol. 39, no. 1, 
pp. 119, 2006.

[8] M. Shoucri, “Helicon waves in a cylindrical plasma,” 
Canadian Journal of Physics, vol. 77, no. 5, pp. 385-391, 
1999.

[9] K.-Z. Zhang, y  J.-K. Xue, “Streaming instability in 
bounded three-component quantum plasmas,” Phys. 
Plasmas, vol. 17, no. 3, 2010.

[10] J. R. Angus et al., “Kinetic theory of electromagnetic 
plane wave obliquely incident on bounded plasma slab,” 
Phys. Plasmas, vol. 17, no. 10, 2010.

[11] T-Kim, y  M.-J. Lee, “Dust ion-acoustic surface waves 
and Landau damping in a semi-bounded Lorentzian 
plasma,” Phys. Plasmas, vol. 15, no. 12, 2008.

[12] B. F. Mohamed, y  M. A. Aziz, “Propagation of 
TE-Surface Waves on Semi-Bounded Quantum 
Plasma,” International Journal of Plasma Science and 
Engineering, [En línea], vol. 2010, no., Disponible: 
http://www.hindawi.com/archive/2010/693049/cta/, 
2010.

[13] C. J. Diaz, “On the Vlasov-Poisson system of equations 
for an inhomogeneous cylindrical plasma ” Plasma 
Phys., vol. 23, no. 5, pp. 455-472, 1981.

[14] A. Devia, “Ondas Electromagnéticas en Plasmas 
cilíndricos e Inhomogéneos,” tesis de Tesis de maestría, 
Universidad del Valle, 1983.

[15] A. Devia et al., “Electromagnetic oscilations in 
cylindrical plasmas with electron beams interactions,” 

Astrophysics and Space Science, vol. 256, pp. 321-326, 
1997.

[16] J. Hoyos, “Relación de dispersión para ondas 
electromagnéticas en un plasma cilíndricos,” tesis de 
pregrado en Física, Universidad Nacional de Colombia, 
2001.

[17] J. Hoyos et al., “Transverse Magnetic Modes in a 
strongly magnetized bounded inhomogeneous plasma,” 
presentado en Simposio Chileno de Física, Concepción, 
2002.

[18] A. Vlasov, “On the Kinetic Theory of an Assembly of 
Particles with Collective Interaction,” Journal of Physics 
USSR, vol. 9, no. 1, pp. 25-40, 1945.

[19] J. D. Jackson, Electrodinámica Clásica, 2 ed., Madrid: 
Editorial Alhambra, 1980, 861 p.

[20] B. D. Fried, y  S. D. Conte, The Plasma Dispersion 
Function, New York: Academic Press, 1961, 419 p.

[21] T.Watanabe, y  H. Daigaku, Efficient computation of 
the plasma dispersion function Z, Hiroshima: Institute 
for Fusion Theory, Hiroshima University, 1979, 14 p.

[22] Y. Serizawa et al., “A Numerical Method for Eigenvalue 
Problems of Integral Equations,” J. Phys. Soc. Jpn, vol. 
52, pp. 28-35, 1983.

[23] G. Tribulato, “Characterization of a magnetized plasma 
in cylindrical geometry,” tesis de maestría en Física, 
Universidad de Tromso, Noruega, 2007.



187Numerical solution of an eigenvalue problem for bounded plasma

Revista Ingenierías Universidad de Medellín, vol. 10, No. 19, pp. 179-188 - ISSN 1692-3324 - julio-diciembre de 2011/228 p. Medellín, Colombia

Figure 1. First Transverse magnetic low frequency modes (TM01,TM02, TM03). The dashed lines show the modes for the 
homogeneous case and the full line the inhomogeneous case. 

Source: Own elaboration.

 
Figure 2. Low frequency TM01 mode obtained numerically (full line) and comparison with the corresponding mode 

obtained in the experiment of Malmberg and Wharton (circles) [4]. 

Source: Own elaboration.
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Figure 3. High frequency electromagnetic mode TM01 and comparison with the light waves in a vacuum. 

Source: Own elaboration.

 

Figure 4. High frequency electromagnetic modes TM02 , TM03  

Source: Own elaboration.




