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ABSTRACT
In this research article a dynamic estimation of neuronal activity and brain dy-

namics from electroencephalographic (EEG) signals is presented using a dual Kalman 
filter. The dynamic model for brain behavior is evaluated using physiological-based 
linear models. Filter performance is analyzed for simulated and clinical EEG data, 
over several noise conditions. As a result a better performance on the solution of 
the dynamic inverse problem is achieved, in case of time varying parameters com-
pared with the system with fixed parameters and the static case. An evaluation of 
computational load is performed when predicted dynamic cases, estimated using 
the Kalman filter, are up to ten times faster than the static case.
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ESTIMACIÓN DE LA ACTIVIDAD NEURONAL Y LA DINÁMICA  
DEL CEREBRO USANDO UN FILTRO DE KALMAN DUAL BASADO  

EN UN MODELO FISIOLÓGICO LINEAL

RESUMEN
En este artículo de investigación se presenta la estimación de la actividad neuronal 

y la dinámica del cerebro a partir de señales electroencefalográficas (EEG) usando 
un filtro de Kalman dual. El comportamiento dinámico del cerebro se representa 
a partir de modelos lineales con base en restricciones fisiológicas. Como resultado, 
se obtiene un mejor desempeño en la solución en el caso de modelos variantes con 
el tiempo, al compararla con modelos invariantes en el tiempo, y con la solución 
estática. Se presenta una evaluación de la carga computacional donde es claro que 
la estimación de la actividad neuronal con el filtro de Kalman basada en modelos 
dinámicos lineales, es hasta 10 veces más rápida, que la solución para el caso estático.

Palabras clave: problema inverso, filtro de Kalman, estimación, modelo fisioló-
gico, modelo del cerebro.
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INTRODUCTION
Functional neuroimaging aims to non-invasively 
characterize the dynamics of the distributed neural 
networks that mediate brain function in healthy 
and pathological states. As rule, neural current 
distribution within the brain or neuronal activity is 
estimated through functional Magnetic Resonance 
Imaging (fMRI) or electroencephalographic signals 
(EEG). Former technique allows direct estimation 
of neuronal brain dynamics with high spatial reso-
lution, but providing low temporal resolution. On 
the contrary, the images generated by EEG inverse 
solutions exhibit a lower spatial resolution, but pos-
sess a much higher temporal resolution, which is 
important for studying brain dynamics [1]. In this 
regard, since the neuronal activity has an inherent 
strong spatial and temporal dynamics, the source 
localization task (the inverse problem) instead of 
being calculated using only the measurement at 
one single time point might consider the dynamic 
variability of the neuronal activity [2]. In other 
words, the inverse problem should include dynamic 
constraints that take into account the evolution 
of the neuronal activity, by choosing appropriate 
dynamical models [3]. 

Nonetheless, several issues need to be consid-
ered for the dynamic inverse solution. The main 
restriction is the selection of the dynamical model. 
According to [4, 5], linear or nonlinear dynamic 
models should be considered as an approximation 
of brain dynamics. This incorporation of physi-
ological meaningful models into inverse solution 
framework can provide a better description of the 
system dynamics. For example, linear models of 
first and second order with time invariant param-
eters are employed in [1, 6], but these approxima-
tions only can track simulated EEG signals, even 
when these are physiological meaningful models. 
Consequently, for real EEG signals, some variants 
of the dynamic model should be considered in 
order to improve the performance of the dynamic 
model for spatial and temporal behavior, such as 
more complex linear or nonlinear models, and tem-

poral variability for the source and local neighbor 
interaction. 

Besides, dynamic neuronal activity estimation 
is a high dimensional task and its implementation 
leads to exasperating computational load. In this 
line, Kalman filtering is discussed in [6] as an alter-
native that includes a decoupling of the dynamic 
model for each source independently reducing com-
putational load. However, when dynamic model 
performance is evaluated over real EEG signals 
they obtain problems in spatial coupling as a result 
of the decoupled implementation. So, it is possible 
to improve the performance of the decoupling 
method proposed in [6] using methods of filter 
partition [7] or high performance computing [8]. 

This article presents an estimation method for 
neuronal activity on the brain, taking into account 
in the solution of the inverse problem a dynamic 
model with time varying parameters. This model is 
applied over a realistic head model calculated with 
boundary element method. The analysis is made 
up from simulated EEG signals for different levels 
of noise. The solution of the inverse problem is 
achieved using high performance computing tech-
niques by Kalman filtering methods where neuro-
nal activity and model’s parameters are estimated 
simultaneously. This article is organized as follows: 
section 1 presents models for solving the inverse 
problem for the static and dynamic case using Kal-
man filter for estimation of neuronal activity and 
model parameters. Section 2 shows a head model 
using boundary element method (BEM) and sec-
tion 3 develops the comparative analysis between 
the static and dynamic methods for several noise 
conditions in case of simulated and clinical EEG 
signals with superficial and deep sources.

1.  MATERIALS AND METHODS

1.1  Inverse problem framework

Solution of the inverse problem using distributed 
sources presents a high computational load, for that 
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reason, in [8] high performance computing (HPC) 
techniques are used for the development of the 
solution in dynamic inverse problems. Estimated 
neuronal activity will be mapped over a realistic 
head model obtained from fMRI. Realistic head 
models will be used for analysis according to [3, 
2, 6]. 

The static inverse problem can be formulated 
as follows

(1)k k ky Mx ε= +

In equation (1), yk denotes a vector of dimen-
sion d × 1  that contains the measures of the EEG 
on the surface of the head for d electrodes in an 
instant k of time. xk = [xT

1 … xT
N]T denotes a 3N × 

1  vector that contains the current density vectors 
xi = [xix xiy xiz]T  with i = 1, 2, …, N  where N is the 
number of sources inside the brain. Matrix M 
has a d × 3N dimension and it relates the current 
density inside the brain xk in instant k with EEG 
measures yk. It is called lead field matrix and can 
be calculated using Maxwell equations for a specific 
head model [2]. The vector ε with d × 1 dimension 
is an additive random variable that represents the 
non-modeled features of the system, i.e. observa-
tion noise, and it can be assumed as a Gaussian 
distribution of the form ε ∼ G(0,σ2∑ε) with known 
covariance structure ∑ε.

This is an ill-posed problem and the estimation 
of ˆ kx  can be obtained by minimizing the objec-
tive function given in equation (2) for each time k 
independently.

2 22( ) L (2)k k k kE λ= − +
åÓ

x y Mx x

where L is defined as the spatial smoothness 
constraint where the ith row vector of L acts as a 
discrete differentiating operator (Laplacian opera-
tor) by forming differences between the nearest 
neighbours of the jth source and ith source itself. 
The parameter λ, called regularization parameter, 
expresses the balance between fitting the model 
and the prior constraint of minimizing Lxk. It can 

obtain an estimate of ˆ kx by minimizing equation 
(2), as given by equation (3).

{ }2 22ˆ arg min -  (3)
k

k k k k
x

x y Mx Lx
ε
λ

Σ
= +

The solution of this minimization problem for 
a given λ is obtained by equation (4).

( )-1-1 2 -1ˆ   (4)T T Tx M M L L M yε ελ= Σ + Σ

The parameter λ is calculated using methods 
of parameter selection as L-curve [9].

The dynamic inverse problem sustains the 
same equation for measurements observations but 
takes in to account the dynamic of the neuronal ac-
tivity xk, this problem can be formulated as follows

( )
( )

2

2
-1

          ~ 0,

         ~ 0, (5)

k k k k

k k k k

y Mx G

x Ax G

ε

η

ε ε σ

η η τ

= + Σ

= + Σ

where A is a matrix that takes into account the 
dynamic of the neuronal activity, and ∑η = (LTL)–1 
is a covariance matrix associated with η. 

The structure of A is selected according to a 
physiological based model proposed by [5, 6]. In 
the case of a first order linear model xk = Axk–1 + 
k,  A is defined as follows

   1 1 (6)a b= +A I L  

where a1 considers the variability among sourc-
es in time and b1 in space.

Moreover, in order to consider a more realistic 
dynamic [5], the state equation presented in (5) 
could be extended to a second order linear model 
given by equation (7)

1 -1 2 -2 (7)k k k kx A x A x η= + +

where

 1 1 1 2 2, (8)a b a= + =A I L A I

This model can be formulated in the form of 
a first order model as follows
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with

 

0
(10)

0 0
η

η

 Σ
 Σ =   



Therefore, equation (5) with the structures 
given by equations (6) and (9) is an ill-posed inverse 
problem and can be solved by minimizing the ob-
jective function given in equation (11)

( ) 2 22
1 (11)k k k k kE x y Mx x Ax

ε η
λ −Σ Σ

= − + −

An initial estimate (for k = 1) of the state x1 
can be obtained by any approach for solving the 
instantaneous inverse problem. For k = 2, …, N, 
we can obtain an estimate of ˆ kx by minimizing 
equation (11), as given by equation (12).

 { }2 22
-1ˆ ˆarg min -  - (12)

k
k k k k k

x
x y Mx x Ax

ε η
λ

Σ Σ
= +

where 1ˆ k−x  is the estimate obtained in the pre-
vious step. The solution of equation (12) is given 
by (13).
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Direct computation of this expression is nu-
merically impracticable because the inverse of 
dimensions of M. However, the dynamic inverse 
problem in case of neuronal activity estimation xk 
presented in equation (13) is a state space formula-
tion that could be solved through the Kalman filter.

1.2 Neuronal activity estimation

Kalman filter recursions in case of states (neuronal 
activity) estimation are given by the equations (14) 
and (15).

Equation (14) is known as time update equation
-

-1

-
-1

ˆ ˆ

(14)

k k

T
k k

x Ax

A A η

=

Σ = Σ +Σ

where ˆ k
−x  is defined as a priori estimation of 

ˆ kx , and -
kΣ  is defined as a priori covariance.

The measurement update equations for the 
state filter are

( )
( )

( )
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-
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This formulation is useful if A is considered 
as a fixed matrix for all k. 

1.3 Neuronal activity and parameter estimation

In order to achieve an improvement in the dynamic 
model is useful to consider A as a time varying 
matrix Ak for each k. Consequently, the solution 
of the dynamic inverse problem in case of neuronal 
activity estimation xk  and parameter estimation Ak 
could be formulated using two sequential Kalman 
filters given by the recursion presented in equations 
(16) – (19).

Time update equations for parameter filter are
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The measurement update equations for the 
state filter are
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And those for the parameter filter
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where ˆ kw  is defined as a vector that con-
tains the coefficients a1, b1  of equation 
(6), or coefficients a1, b1, a2 of equation (8). 
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w

∂
= = =

∂
, ∑e is the 

associated covariance matrix of e, B is the struc-
ture of time varying parameters (specifically, for 
this work B = I for random walk), and 

kr
Σ is the 

covariance associated with the parameter variation. 
This estimation is known as a dual Kalman filter.

1.4 Head modeling through BEM

In head modeling there can be used from simple 
models such as spherical, to complex models like 
finite elements, boundary element method, finite 
volumes, finite differences, etc. Modeling with 
the boundary element method (BEM) presents a 
middle point of complexity between the named 
models, obtaining a more realistic approximation 
of the head model while it keeps some properties of 
simple spherical models (i.e. uniform conductivity). 
The head models vary their complexity with the 
number of layers, like follows: a layer: the brain; 
two layers: brain and skull; three layers: brain, skull 
and skin; four layers: brain, skull, cerebrospinal 
fluid, skull and skin [3]. 

The BEM model consists of a set of point 
located over every layer of head model and that 
form the vertices of a set of triangles. This way, 
the realistic model obtained corresponds to an ap-
proximation through the set of triangles for every 
layer which are considered isotropic conductivities 
in the same way as is done for the spherical model. 

Thus, the lead field matrix M involves spatial 
relationships between sources located within the 
brain (inner layer) with located electrodes over the 
skin (outermost layer). Figure 1 shows the head 
model with three layers using BEM.

2. RESULTS AND DISCUSSIONS

Initially, system dynamics will be approximated 
through a linear time invariant model. This linear 
model must consider temporal and spatial con-
straints of dynamical process. In order to improve 

dynamic model performance, structural model 
variations that preserve spatio-temporal constraints 
will be considered. For neuronal activity approach, 
a linear time invariant physiological based model 
will be used according to [5] that take into account 
anatomic constraints related with spatial coupling 
between sources. According to [1, 6], structural 
changes of linear dynamic models will be ana-
lyzed, considering physiological constraints in a 
time invariant model. Then, an evaluation of the 
performance of dynamic models proposed by [6] 
will be used for the different applied models con-
sidering principally estimation error in simulated 
a real EEG signals. 

Since real dynamical models are time varying, 
an estimation of dynamic model parameters will 
be developed, consistent with the different struc-
tures for parameter variation as proposed by [10]. 
In each case, the methodology for dynamic inverse 
problem solution proposed in [6] will be used for 
estimation of neuronal activity considering error 
estimation in simulated EEG signals. A compara-
tive analysis will be performed among different 
dynamic models with applied variation structures 
and with fixed parameters, using simulated EEG 
signals. A schematic diagram of the experimental 
setup is presented in figure 2.

 

Figure 1. Realistic head model with BEM.
Source: authors
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2.1 Experimental setup

In order to obtain the dynamic estimation of 
neuronal activity and brain dynamics using a 
physiological based linear model, the Kalman filter 
and dual Kalman filter are applied to EEG data. 
To consider the relative contribution to the filter 
performance of different parts of the process model 
for the dynamic inverse problem, in case of a first 
and second order linear system and its comparison 
with the static inverse problem, the following cases 
are to be considered: 1) static case of equation (1); 
2) first order model given in equation (6) with fixed 
parameters without spatial coupling (b1 = 0); 3) 
first order model with spatial coupling with fixed 
parameters; 4) second order model of equation (8) 
with spatial coupling with fixed parameters; 5) 
first order model with adaptive parameters without 
spatial coupling (b1 = 0); 6) first order model with 
spatial coupling with adaptive parameters; and 7) 
second order model with spatial coupling with 
adaptive parameters. 

Testing is carried out for simulated and clini-
cal EEG recordings, as well. Prior to computing an 
inverse solution, we define a discretized solution 
space consisting of 7x7x7 mm gray matter grid 
points (sources), as recommended in [6]. These 
sources cover the cortex and basal ganglia. At each 
source, the 3D local current vector is mapped, as 
usual, to the 19 electrode sites for the 10 - 20 sys-
tem. The properties of the BEM model used for 
brain mapping are shown in table 1. 

Finally, an evaluation of the computational 
load is performed for static case over first order and 
second order linear dynamic cases, using simple 
and dual Kalman filter. 

2.2 Simulated EEG recordings 

A major issue regarding to the inverse solution task 
is obtaining meaningful evaluations of the algo-
rithm’s results and performance, because location 
of true sources is not available for comparison when 
working with real EEG data. Instead, the most 
common approach is to use simulated EEG data 
where underlying sources are known. Two types 
of sources will be used: sources randomly located 
near the surface of the brain and sources randomly 
located deep in the brain. Nonetheless, to generate 
a simulated EEG dataset for this purpose requires 
selecting a model for the brain dynamics, which 
displays complex spatio-temporal behavior. Here, 
the temporal dynamics are suggested to be modeled 
using a linear combination of three sine functions 
whose components are evenly spaced in the alpha 
band (8-12 Hz), which is selected since the clinical 

 

 

EEG   

 Simulation 
 Clinical  

Inverse Problem  

 Static 
 Dynamic  

(Kalman simple and dual) 

 Linear First Order Model 

Brain Mapping 

in a realistic 

head model 

Figure 2. Schematic diagram of the experimental setup
Source: authors

Shell Conductivity (Ω–1/cm) Triangles (No.)

Skin 0.0286 996

Skull 0.000358 1996

Brain 0.0286 2996

Table 1: Properties of the boundary element model. 

Source: authors
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data used in real EEG recordings display promi-
nent alpha activity [6]. Specifically, the simulated 
brain dynamics where generated for 256 time 
points, assuming a sampling rate of 256 Hz. 

The performance of the inverse solutions is 
compared with simulated EEG data for the fol-
lowing values of SNR: 5 dB, 10 dB, 15 dB, 20 dB 
and 25 dB for each type of source. Besides, 25 
repetitions of one second of synthetic EEG data, 
according to 10 - 20 system, are generated from the 
simulated current densities by multiplication with 
the lead field matrix M.

The obtained results for the static case solution 
of equation (1) when considering several SNR are 
shown in table 2, where a regularized solution is 
used to solve the inverse problem of equation (3). 
In this case, a Tikhonov solution with L-curve 
method for parameter selection is used [9]. It can 
be seen that the obtained results are similar to the 
outcomes given in [2], namely, the performance of 
the considered algorithm is highly dependent of 
the noise.

On the other hand, when temporal constraints 
are included in the solution of the inverse problem, 
the solution of the inverse problem could be im-
proved. Nonetheless, it is shown that if choosing 
appropriate dynamic models, better solutions than 
those obtained by the static case can be achieved [1].

In the case of a dynamic model with time 
invariant parameters, when assuming first and 
second order models, the obtained results are 
shown in table 3, which are similar with those 
outcomes given in [6], for time invariant parameters 
(calculated offline). For example, when looking to 
the  first order model without spatial coupling (i.e. 
case 2), the results are not as good as in the case 
of the first order model with spatial coupling (case 
3); whereas the second order model shows better 
performance in case of dynamic estimation with 
fixed parameters. It must be quoted that similar 
result, for the considered variations of the dynamic 
model, where obtained in [6]. Nonetheless, the 
main drawback of a time invariant model is that 
in case of any model change, the estimation error 
significantly increases. 

As shown in figure 3, the estimated neuronal 
activity of each source vs. samples, when consider-
ing the static inverse problem (middle subfigure), 
is highly dependent of the level of noise. On the 
opposite, estimated dynamic solution (bottom sub-
figure) that takes into account the noise variability 
shows a better approximation of original activity 
(upper subfigure). 

Table 4 resumes the obtained results for dy-
namic models with time variant parameters, given 
by first and second order models with spatial 
coupling of Equations (6), (8) respectively. It can 
be seen clearly that for time variant parameters, a 
lower estimation error in presences of high noise 
is achieved, since the estimated model takes into 
account the variability of the signal. Moreover, 
the best performance is achieved using the second 
order model with time variant parameters. As a 
result, even that the lead field matrix M is fixed 

Case Source 5 dB 10 dB 15 dB 20 dB 25 dB

1 
Surface 24.424.34 13.823.21 7.901.78 4.390.71 2.410.35

Deep 34.464.51 20.093.35 11.171.93 6.180.98 3.690.41

Table 2. Estimation error (%) for simulated signals  
for static case

Source: authors

Case Source 5 dB 10 dB 15 dB 20 dB 25 dB

2 
Surface 6.341.14 3.490.94 2.210.67 1.420.45 1.210.26

Deep 7.081.44 4.311.04 3.020.74 2.050.49 1.760.32

3
Surface 1.421.11 1.160.91 1.050.61 1.020.41 1.020.21

Deep 1.461.13 1.970.98 1.790.80 1.120.52 1.930.33

4
Surface 1.270.98 0.940.89 0.850.71 0.820.38 0.800.27

Deep 1.381.31 1.740.93 1.380.68 1.560.39 1.680.35

Table 3. Estimation error (%) for simulated signals for 
dynamic cases with fixed parameters

Source: authors
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any occurred change either in the conductivity of 
the brain or external stimulus is considered as a 
variation into the whole assumed adaptive model. 

As illustration, the EEG data with noise, the 
dynamic solution of a first order model with spatial 
coupling (case 6), and the parameter progress are 
shown in figure 4 with a 15 dB SNR. Hence, the 
time variant parameters shows convergence in the 

case of spatial coupling, around b1=0.01, whose 
value is some close with the results estimated by 
[6], when offline parameters is appraised. This 
behavior of parameters points out on the necessity 
to consider the spatial coupling in the model even 
when if their values might be considered small in 
comparison with ones of the temporal behavior, 
as discussed in [11].

2.3 Clinical EEG recordings 

In case of real EEG signals we now estimate inverse 
solutions for a time series chosen from a normal 
EEG recording collected during routine clinical 
practice (Neurocentro de Occidente, Pereira, Co-
lombia). The data were recorded from a healthy 
male adult aged 45 years, in awake resting state 
with eyes closed. Electrodes were placed according 
to the 10–20 system and the data were collected at 
a sampling rate of 256 Hz. The resolution of the 
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Figure 4. Simulated EEG with noise estimated neuronal 
activity and parameter tracking for a first order model with 

spatial coupling with adaptive parameters.
Source: authors

Case Source 5 dB 10 dB 15 dB 20 dB 25 dB

5 
Surface 2.240.73 1.730.55 1.230.25 0.720.14 0.700.09

Deep 2.270.78 2.160.52 1.260.31 1.170.17 0.840.07

6
Surface 1.370.71 0.970.31 0.790.28 0.700.11 0.680.06

Deep 1.760.69 1.390.42 0.900.32 0.980.13 0.890.08

7
Surface 1.250.72 0.910.43 0.750.33 0.670.15 0.640.11

Deep 1.360.75 1.180.37 1.210.29 0.850.18 1.130.12

Table 4. Estimation error (%) for simulated signals for 
dynamic cases with adaptive parameters

Source: authors
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Figure 3. Real neuronal activity data, estimated data for 
both static and dynamic cases.

Source: authors
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AD conversion was 12 bit. A 2 seconds time series 
was selected from the recording for analysis.

A dual Kalman filter with a second order 
model is used for real EEG signals in case of an 
eyes closed event. The estimated neuronal activity 
spatially localized is mapped over a realistic BEM 
head model, as shown in figure 5. Here, an area 
of activity is presented at the right occipital pole 
as expected for prominent occipital alpha activity. 
These observations are consistent with an eyes–
closed event in EEG recording. 

2.4 Computational load

In order to evaluate the performance of the solu-
tions from a computational load point of view using 
the high performance computing techniques, an 
evaluation of the estimation process time is per-
formed for static case, first order and second order 
linear dynamic cases using simple and dual Kalman 
filter. This analysis is performed over a single com-
puter with dual core of 2.6 GHz processor and 2 

Static case
Second Order Model First Order Model

Kalman dual Kalman  simple Kalman dual Kalman simple

Time (s) 22.0040.879 14.5810.353 12.7270.205 2.7460.020 2.4170.029

Table 5. Time estimation process comparison 

Source: authors

 

 Figure 5. Brain mapping for real EEG signals.
Source: authors

GB of RAM. In order to address the limitation of 
large scale computations, we arrange the Kalman 
filtering computations such that the data intensive 
aspects of the algorithm can run in parallel. The 
results of this evaluation for 25 repetitions of each 
case are shown in table 5. 

It is noticeable from table 5, that the time 
of estimation for the dynamic cases of the first 
order model is 10 times less than the static case. 
In particular, the estimation time of the second 
order model requires 5 times more than the first 
order model because the formulation of the model 
is according to equation (11) which duplicate the 
number of sources of the linear model. Even so, 
the second order model requires almost the half 
of time than the static case. 

3. CONCLUSIONS
In this paper, we have addressed the dynamical 
inverse problem of EEG signals for estimation 
of neuronal activity and brain dynamics, being 
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a generalization of the more traditional instanta-
neous and dynamic inverse problems, and we have 
presented a new approach for estimating the time 
varying parameters of the dynamic model itself. 
The obtained results demonstrate that the model 
with adaptive parameters has a better performance 
than the instantaneous inverse problem and the 
dynamic inverse problem with fixed parameters. 
This improvement is because the model with time 
varying parameters takes into account any variation 
of the brain dynamics.

If only a very simple model is employed, the 
resulting inverse solution may not offer much 
improvement over the results provided by instanta-
neous techniques. As expected, the more elaborate 
a dynamic model is applied, the more the resulting 
inverse solutions will be able to explain the ob-
served EEG data. These results were confirmed for 
each case study in this paper for simulated signals 
over several SNR values where the second order 
model with adaptive parameters reached the better 
performance. In general, the dynamic models with 
adaptive parameters for neuronal activity estima-
tion shows a better performance over signals with 
low SNR values in comparison with the models 
with fixed parameters and the instantaneous case.

Additionally, in real EEG signals the estimated 
activity may be particularly useful for localizing 
points or areas within brain that display typical or 
atypical behavior, such as epileptic foci or others 
events. 

Furthermore, there is a relevant reduction in 
the computational cost for the dynamic cases over 
the static case even for the second order linear 
model which is the most critical case because dupli-
cate the number of sources. In case of the first order 
linear case the reduction of time for the dynamical 
calculations is less than ten times the static case. 
Consequently, the dynamic implementation of the 
Kalman filter applying high performance comput-
ing techniques reduce the computational cost and 
facilitate large scale calculations.

For future work, more complex dynamic mod-
els (such as nonlinear models) should be calcu-
lated in order to improve the performance of the 
estimator.
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