Explosive Parameters for Coal Samples (Antioquia, Colombia)

Rafael Fuentes Chica | Bio
Universidad Nacional de Colombia
Jorge Molina Escobar | Bio
Universidad Nacional de Colombia
Astrid Blandón Montes | Bio
Universidad Nacional de Colombia

Abstract

Through proximate analysis (residual moisture, RM, ashes, As, volatile matter, VM, fixed carbon, FC, total Sulphur, TS and calorific value, CV), granulometric, minimum cloud ignition temperature tests (TMIn), lower explosion limit (LEL) and explosion severity (Kmáx); it is proposed to identify which coal produces the most explosive dust.

For most samples, the highest amount of coal particle volume is between 100 μm and 200 μm. For the Amagá sample, the volume of particles smaller than 10 μm is the largest, which agrees with the results of the TMIn, which is the lowest (400 °C), the lowest LEL (30 g/m3) and the highest Kmáx value (176 bar, m/s). On the contrary, the Angelópolis sample presents a very skewed curve towards sizes between 60 μm and 300 μm, therefore, its TMIn is the highest (480 °C) of the Eastern Zone of the Sinifaná basin and its LEL is under 60 g/m3, and it also presents the lowest value of Kmáx (106 bar, m/s), thus, it is observed that there is a direct relationship between the granulometry and the results of severity and sensitivity to the explosion.

In general, there is a different behavior between the samples of the municipalities of Amagá and Titiribí, especially between the LIE and the results of the analyses of VM, FC and CV, with respect to the other samples, which is also in agreement with their greater susceptibility to inflammation and explosiveness.

References

  1. [1] Universidad Nacional de Colombia, Determinación del grado de explosividad del polvo de carbón y cuantificación del contenido de gas metano en los mantos de carbón de la cuenca del Sinifaná, Medellín: Gobernación de Antioquia, 2014.

  2. [2] T. Abbasi y S. A. Abbasi, “Dust explosions-cases, causes, consequences, and control,” J. Hazard. Mater, vol. 140, N.° 1, pp. 7-44, 2007.

  3. [3] W. Cybulski, Coal dust explosions and their suppression, Bureau of Warsaw, Varsovia, Foreign, Special Science, Currency Program, Information, 1975.

  4. [4] A. Jiménez, M. A. Alfonso, V. Aguirre, E. F. Morales, J. Martínez, R. Sguerra, J. M. J. Navarro y M. Alzate, “Informe preliminar de la investigación del accidente fatal de 73 trabajadores sucedido el miércoles 16 de junio de 2010 en la Mina San Joaquín titulo 11338 beneficiario Carbones San Fernando, Ubicada en el municipio de Amaga, (vereda Paso Nivel) Antioquia,” Ministerio de Minas, pp. 4-5, Bogotá, 2010.

  5. [5] J. Molina y A. Blandón, “Evidencias del choque térmico en partículas de polvo después de una explosión en minería de carbón,” Revista Ingeniería y Competitividad, vol. 16, N.°2, pp. 23-33, 2014.

  6. [6] Casas, A. Blandón y J. Molina, “Evaluación de los parámetros para determinar el grado de explosibilidad del polvo de carbón,” Boletín Ciencias de la Tierra, N.°36, pp. 42-54, 2014.

  7. [7] Ministerio de Minas y Energía, “Política Nacional de Seguridad Minera,” Bogotá, Dirección de Minas, 2011, pp. 13-17.

  8. [8] P. Amyotte, “Some myths and realities about dust explosions,” Process Safety and Environmental Protection, vol. 92, N.°4, pp. 292-299, 2014.

  9. [9] J. D. McAteer, “Upper Big Branch The April 5, 2010, explosion: a failure of basic coal mine safety practices,” Report to the Governor, Governor’s Independent Investigation Panel, Virginia del Este, 2011.

  10. [10] J. García-Torrent, N. Fernández-Anez, L. Medic-Pejic, A. Blandón-Montes y J. M. Molina-Escobar, “Ignition and explosion parameters of Colombian coals,” Journal of Loss Prevention in the Process Industries, vol. 43, pp. 706-713, 2016.

  11. [11] K. L. Cashdollar, “Coal dust explosibility,” Loss Prevention in the Process Industries, vol. 9, N.º 1, pp. 65 - 76, 1996.

  12. [12] J. Michelis, B. Margenburg, G. Müller y a. W. Kleine, “Investigations into the buildup and development conditions of coal dust explosions in a 700-m underground gallery,” de Industrial Dust Explosions, ASTM STP 958, Filadelfia, American Society for Testing and Materials, 1987, pp. 124 - 137.

  13. [13] P. Amyotte y E. R., “Dust explosion causation, prevention and mitigation: An overview,” Journal of Chemical Health and Safety, vol. 17, N.° 1, pp. 15–28, 2010.

  14. [14] A. GarcÍa, A. Di Benedetto, P. Russo, E. Salzano y R. Sanchirico, “Dust/gas mixtures explosion regimes,” Powder Technology, vol. 205, N.° 1–3, pp. 81-86, 2011.

  15. [15] L. Qingming, B. Chunhua, L. Xiaodong, J. Li y D. Wenxi, “Coal dust/air explosions in a large-scale tube,” Fuel, vol. 89, N.° 2, pp. 329-335, 2010.

  16. [16] BSI Group, British Standards Institution, EN 14034-3, 2006+A1, Determination of Explosion Characteristics of Dust Clouds. Determination of the Lower Explosion Limit LEL of Dust Clouds, 2011.

  17. [17] BSI Group, British Standards Institution, EN 50281-2-1, Electrical apparatus for use in the presence of combustible dust - Part 2-1: Test methods - Methods for determining the minimum ignition temperatures of dust, 1998.

  18. [18] BSI Group, British Standards Institution, EN 14034 - 1, 2004+A1, Determination of Explosion Characteristics of Dust Clouds. Determination of the Maximum Explosion Pressure Pmax of Dust Clouds, 2011.

  19. [19] Directivas ATEX (atmósfera explosiva), Guía técnica para a seguridad y salud en atmósferas explosivas, Madrid, pp.41-108, 2003.

  20. [20] K. Baquero, A. Blandón y J. Molina, “Analysis of the factors that affect in the explosibility of coal dust in underground mines,” Ing. y Compet., vol. 14, N.° 2, pp. 147-160, 2012.

  21. [21] Laboratorio Oficial J.M. Madariaga, LOM, “Caracterización de parámetros explosivos para muestras de polvo de carbón (LOM 14SOLI8175),” Universidad Politécnica de Madrid, Madrid, 2014.

  22. [22] ASTDM International, American Society for Testing and Materials, ASTM D3172 - 13, Standard Practice for Proximate Analysis of Coal and Coke, 2013.

  23. [23] ASTDM International, American Society for Testing and Materials, ASTM D3302M - 15, Standard Test Method for Total Moisture in Coal, 2015.

  24. [24] ASTDM International, American Society for Testing and Materials, ASTM D3173 - 11, Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 2011.

  25. [25] ASTDM International, American Society for Testing and Materials, ASTM D3174 - 12, Standard Test Method for Ash in the Analysis Sample of Coal and Coke, 2012.

  26. [26] ISO, International Organization for Standardization, ISO 562, Volatile matter in the analysis sample of coal and coke, 3.a ed., 2010.

  27. [27] ASTM International, American Society for Testing and Materials, ASTM D5865 - 13, Standard Test Method for Gross Calorific Value of Coal and Coke, 2013.

  28. [28] ASTM International, American Society for Testing and Materials, ASTM D4239 - 14,Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion, 2014.

  29. [29] M. Frías, M . P. de Luxan, M. I. Sánchez de Rojas , “Espectrometría de difracción por rayos laser,» Materiales de construcción, vol. 38, N.° 212, pp. 37-52, 1988.

How to Cite
Fuentes Chica, R., Molina Escobar, J., & Blandón Montes, A. (2018). Explosive Parameters for Coal Samples (Antioquia, Colombia). Revista Ingenierías Universidad De Medellín, 17(33), 19-38. https://doi.org/10.22395/rium.v17n33a1

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in