Changes in the Chemical Structure of High-Density Polyethylene when Undergoing Multiple Reprocessing

Juan Manuel Cárdenas-Giraldo | Bio
Universidad Nacional de Colombia
Andrés Felipe Rojas-González | Bio
Universidad Nacional de Colombia
Beatriz Clemencia Galviz-Garcia | Bio
Universidad Nacional de Colombia

Abstract

In this paper, which presents the original results of a research funded by Colciencias and Facultad de Ingeniería y Arquitectura from the Universidad Nacional de Colombia, headquarters Manizales, publishes the changes of high-density polyethylene extrusion and injection grade identified after being subjected to five reprocessing processes in extrusion, injection and extrusion/injection. The identification of the changes is made through the comparison of the FTIR spectrum with those reported in different bibliographical references. The spectra were obtained by means of a Platinum ATR spectrometer. The thermal degradation was greater in the extrusion/injection process, followed by injection, extrusion at 80 rpm and extrusion at 20 rpm. It is concluded that there is a low degradation of high-density polyethylene after being reprocessed in five cycles, evidencing the appearance of the carbonyl group, vinyl groups and COC group.

References

  1. [1] N. Singh, D. Hui, R. Singh, I. Ahuja, L. Feo y F. Fraternali, “Recycling of plastic solid waste: A state of art review and future applications,” Composites Part B: Engineering, vol. 115, pp. 409-422, 2017.

  2. [2] C. Breen, P. M. Last, S. Taylor y P. Komadel, “Synergic chemical analysis - The coupling of TG with FTIR, MS and GC-MS 2. Catalytic transformation of the gases evolved during the thermal decomposition of HDPE using acid-activated clays,” Thermochimica Acta, vol. 363, pp. 93-104, 2000.

  3. [3] A. F. Rojas y T. Osswald, “Determinación de la degradación térmica de polímeros por análisis de cambio de color,” Ingeniería, vol. 21, n.º 1, pp. 19-30, 2016.

  4. [4] A. F. Rojas-González y L. M. Aranzazu-Ríos, “Estabilidad de procesamiento de polímeros: índice de degradación en proceso,” Revista Mutis, vol. 5, n.º 1, pp. 37-45, 2015. DOI: https://doi.org/10.21789/22561498.1017

  5. [5] A. A. Cuadri y J. E. Martín-Alfonso, “The effect of thermal and thermo-oxidative degradation conditions on rheological, chemical and thermal properties of HDPE,” Polymer Degradation and Stability, vol. 141, pp. 11-18, 2017.

  6. [6] M. J. Abad, A. Ares, L. Barral, J. Cano, F. J. Díez, S. García-Garabal, J. López y C. Ramírez, “Effects of a mixture of stabilizers on the structure and mechanical properties of polyethylene during reprocessing,” Journal of Applied Polymer Science, vol. 92, n.º 6, pp. 3910-3916, 2004.

  7. [7] S. Apone, R. Bongiovanni, M. Braglia, D. Scalia y A. Priola, “Effects of thermomechanical treatments on HDPE used for TLC ducts,” Polymer testing, vol. 22, n.º 3, pp. 275-280, 2003.

  8. [8] N. Benoit, R. González-Núñez y D. Rodriguez, “High Density Polyethylene Degradation Followed by Closed- loop Recycling,” Progress in Rubber, Plastics and Recycling Technology, vol. 33, n.º 1, pp. 17-37, 2017.

  9. [9] H. Hifumi, A. V. Ewing y S. G. Kazarian, “ATR-FTIR spectroscopic imaging to study the drying and dissolution of pharmaceutical polymer-based films,” International Journal of Pharmaceutics, vol. 515, n.º 1, pp. 57-68, 2016.

  10. [10] T. Corrales, F. Catalina, C. Peinado, N. S. Allen y E. Fontan, “Photooxidative and thermal degradation of polyethylenes: Interrelationship by chemiluminescence, thermal gravimetric analysis and FTIR data,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 147, n.º 3, pp. 213-224, 2002.

  11. [11] L. C. Mendes, E. S. Rufino, F. O. De Paula y A. C. Torres, “Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City,” Polymer Degradation and Stability, vol. 79, n.º 3, pp. 371-383, 2003. DOI: https://doi.org/10.1016/S0141-3910(02)00337-3

  12. [12] V. Parthasarathi, B. Sundaresan, V. Dhanalakshmi y R. Anbarasan, “Functionalization of HDPE with aminoester and hydroxyester by thermolysis method-An FTIR-RI approach,” Thermochimica Acta, vol. 510, n.º 1, pp. 61-67, 2010.

  13. [13] C. A. Wilkie, “TGA/FTIR: an extremely useful technique for studying polymer degradation,” Polymer Degradation and Stability, vol. 66, pp. 301-306, 1999.

  14. [14] D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas y V. Antonakou, “Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP),” Journal of Hazardous Materials, vol. 149, n.º 3, pp. 536-542, 2007.

  15. [15] J. V. Gulmine, P. R. Janissek, H. M. Heise y L. Akcelrud, “Polyethylene characterization by FTIR,” Polymer Testing, vol. 21, n.º 5, pp. 557-563, 2002.

  16. [16] B. C. Smith, Fundamentals of Fourier transform infrared spectroscopy, London: CRC Press, 2011.

  17. [17] Y. Kann, M. Shurgalin y R. K. Krishnaswamy, “FTIR spectroscopy for analysis of crystallinity of poly(3-hydroxybutyrate-co-4 -hydroxybutyrate) polymers and its utilization in evaluation of aging, orientation and composition,” Polymer Testing, vol. 40, pp. 218-224, 2014.

  18. [18] M. K. Loultcheva, M. Proietto, N. Jilov y F. P. La Mantia, “Recycling of high density polyethylene containers,” Polymer degradation and stability, vol. 57, n.º 1, pp. 77-81, 1997.

  19. [19] P. Oblak, J. González-Gutiérrez, B. Zupančič, A. Aulova y I. Emri, “Processability and mechanical properties of extensively recycled high density polyethylene,” Polymer Degradation and stability, vol. 114, pp. 133-145, 2015.

  20. [20] I. Kriston, E. Földes, P. Staniek y B. Pukánszky, “Dominating reactions in the degradation of HDPE during long term ageing in water,” Polymer Degradation and Stability, vol. 93, n.º 9, pp. 1715-1722, 2008.

  21. [21] A. Kumar, T. Venkatappa-Rao, S. Ray-Chowdhury, y S. V. Ramana-Reddy, “Compatibility confirmation and refinement of thermal and mechanical properties of poly (lactic acid)/poly (ethylene-co-glycidyl methacrylate) blend reinforced by hexagonal boron nitride,” React. Funct. Polyme., vol. 117, pp. 1-9, 2017. DOI: https://doi.org/10.1016/j.reactfunctpolym.2017.05.005

  22. [22] A. S. F. Santos, J. A. M. Agnelli, D. W. Trevisan y S. Manrich, “Degradation and stabilization of polyolefins from municipal plastic waste during multiple extrusions under different reprocessing conditions,” Polymer Degradation and Stability, vol. 77, n.º 3, pp. 441-447, 2002.

  23. [23] J. R. Riba, J. Cailloux, R. Cantero, R. Canals y M. L. Maspoch, “Multivariable methods applied to FTIR: A powerful technique to highlight architectural changes in poly(lactic acid),” Polym. Test., vol. 65, pp. 264-269, 2018. DOI: https://doi.org/10.1016/j.polymertesting.2017.12.003

How to Cite
Cárdenas-Giraldo, J. M., Rojas-González, A. F., & Galviz-Garcia, B. C. (2019). Changes in the Chemical Structure of High-Density Polyethylene when Undergoing Multiple Reprocessing. Revista Ingenierías Universidad De Medellín, 18(35), 111-124. https://doi.org/10.22395/rium.v18n35a7

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in