A methodological proposal for the technical conception of microgrids

Juan David Mina Casaran | Bio
Universidad del Valle
Diego Fernando Echeverry | Bio
Universidad del Valle
Carlos Arturo Lozano Moncada | Bio
Universidad del Valle

Abstract

This paper introduces a methodology for the technical conception of microgrids. It takes into account aspects such as the topological survey of the medium power electrical system, the preselection of renewable sources technologies, the prioritisation of the electrical demand, the localization, dimensioning and operative strategies of the distributed generators, the components model and the microgrid evaluation. This methodology proposes the use of a multi-criteria analysis technique for the prioritisation of the demand and the stability index of (SI) voltage for the location of distributed generators in the microgrid. In this work the computational tool for the power system analysis Neplan® was used for the components modeling and evaluation of the microgrid performance through the IREG voltage regulation index and the optimal power management of the microgrid’s generation units.

References

  1. [1] S. Tselepis and J. Nikoletatos, “Renewable Energy Integration in Power Grids,” IEA-Etsap Irena Technology Brief, 2015. [Online]. Available: www.irena.org.

  2. [2] X. Xia and J. Xia, “Evaluation of Potential for Developing Renewable Sources of Energy to Facilitate Development in Developing Countries,” in Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–3.

  3. [3] R. Palma-Behnke et al., “A Microgrid Energy Management System Based on the Rolling Horizon Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996–1006, 2013.

  4. [4] M. A. Izumida, “Design and Implementation of a Feasible Microgrid Model in Brazil,” 2015, pp. 1–9.

  5. [5] J. Hernández, A. M. Blanco, and L. E. Luna, “Design and installation of a smart grid with distributed generation. A pilot case in the Colombian networks,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 565–569, 2012.

  6. [6] G. Messinis et al., “Multi-microgrid laboratory infrastructure for smart grid applications,” MedPower 2014, no. February 2016, pp. 1–6, 2014.

  7. [7] I. Szeidert, I. Filip, O. Prostean, and C. Vasar, “Laboratory setup for microgrid study,” INES 2016 - 20th Jubil. IEEE Int. Conf. Intell. Eng. Syst. Proc., pp. 289–292, 2016.

  8. [8] J. L. Espinoza, L. G. Gonzalez, and R. Sempertegui, “Micro grid Laboratory as a Tool for Research on Non-Conventional Energy Sources in Ecuador,” 2017 IEEE Int. Autumn Meet. Power, Electron. Comput. Ropec 2017, vol. 2018-Janua, no. Ropec, pp. 1–7, 2018.

  9. [9] C. Patrascu, N. Muntean, O. Cornea, and A. Hedes, “Microgrid Laboratory for Educational and Research Purposes,” 2016 IEEE 16th Int. Conf. Environ. Electr. Eng., pp. 1–6, 2016.

  10. [10] T. Foley et al., Renewables 2015 global status report. 2015.

  11. [11] Z. Xue-song, “Research on Smartgrid Technology,” in International Conference on Computer Application and System Modeling (Iccasm), 2010, no. Iccasm, pp. 599–603.

  12. [12] J. D. Mina, E. F. Caicedo, and C. A. Lozano, “A proposal of integration of decentralized generation architectures in microgrid environments,” Entre Cienc. e Ing., vol. 1, no. 22, pp. 9–17, 2017.

  13. [13] N. Beerea, D. McPhailb, and R. Sharmaa, “A General Methodology for Utility Microgrid Planning,” in IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2015, vol. 3, pp. 1–5.

  14. [14] C. Tjah, R. Yan, T. K. Saha, and S. E. Goodwin, “Design Microgrid for a Distribution Network : A Case Study of the University of Queensland,” in Power & Energy Society General Meeting, 2013, pp. 1–5.

  15. [15] Electric Power Research Institute EPRI, “The Integrated Grid a Benefit-Cost Framework,” Palo Alto, USA, 2015.

  16. [16] P. A. Manrique Castillo, “Metodología Para el Diseño de Sistemas Híbridos Para Generación de Energía Eléctrica y Análisis de su Viabilidad Mediante el Empleo de un Sistema de Información Geográfica,” Universidad del Valle, 2012.

  17. [17] Y. Muñoz and A. Ospino, “Selecting the Optimal Energy Mix and Sizing of a Isolated Microgrid,” Energía y Medio Ambient., vol. 4, no. 7, pp. 59–67, 2013.

  18. [18] Instituto Colombiano de Normas Técnicas y Certificación Icontec, Norma Técnica Colombiana NTC 1340 - Electrotecnia. Tensiones y Frecuencia Nominales en Sistemas de Energía Eléctrica en Redes de Servicio Público. Bogotá, Colombia, 2013.

  19. [19] Unidad de Planeación Minero Energética UPME, Atlas de Radiación Solar de Colombia.Bogotá, Colombia, 2006.

  20. [20] Unidad de Planeación Minero Energética UPME, Atlas de Viento y Energia Eólica en Colombia. Bogotá, Colombia, 2006.

  21. [21] Unidad de Planeación Minero Energética UPME, Atlas del Potencial Energético de la Biomasa Residual en Colombia. Bogotá, Colombia, 2009.

  22. [22] F. E. Sierra, A. F. Sierra, and C. A. Guerrero, “Pequeñas y microcentrales hidroeléctricas : alternativa real de generación eléctrica,” pp. 8–11, 2011.

  23. [23] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” Eur. J. Oper. Res., vol. 48, pp. 9–26, 1990.

  24. [24] K. V Kumar and M. P. Selvan, “Planning and Operation of Distributed Generations in Distribution Systems for Improved Voltage Profile,” 2009 IEEEPES Power Syst. Conf. Expo., vol. 620015, pp. 1–7, 2009.

  25. [25] A. R. Utomo, “Analysis of Lead Acid Battery Operation Based on Peukert Formula,” no. November, pp. 416–419, 2014.

  26. [26] IEEE Standards Coordinating Committee 21, IEEE Application Guide for IEEE Std 1547, Standard for Interconnecting Distributed Resources With Electric Power Systems. New York, USA, 2008.

  27. [27] IEEE Standards Coordinating Committee 21, IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems. New York, USA, 2003.

  28. [28] M. Z. C. Wanik, A. A. Ibrahim, A. K. M. Hussin, M. R. Rusli, and J. H. Tang, “Simplified Dynamic Model of Photovoltaic Generation System for Grid Integration Studies,” in Intelligent and Advanced Systems (Icias), 2014, pp. 1–6.

  29. [29] P. Sorensen, B. Andresen, J. Fortmann, and P. Pourbeik, “Modular Structure of Wind Turbine Models in IEC 61400-27-1,” 2013 IEEE Power Energy Soc. Gen. Meet., pp. 1–5, 2013.

  30. [30] O. Tremblay, L. Dessaint, and A. Dekkiche, “A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles,” in Vehicle Power and Propulsion Conference IEEE, 2007, no. 5, pp. 284–289.

  31. [31] G. Caicedo, C. A. Lozano, A. M. Bahamón, and L. A. Ochoa, “Modelos Para Estimar la Demanda en Sistemas de Distribución,” Energía y Computacion, vol. XI. pp. 35–44, 2002.

  32. [32] D. G. Herrera, G. L. Russi, and E. R. Trujillo, “Evaluación del Impacto de la Generación Distribuida Mediante Índices Normalizados Con Base en la Normatividad Colombiana y Estándares IEEE,” Sci. Electron. Libr. Online, vol. 20, no. 2, pp. 299–315, 2015.

How to Cite
Mina Casaran, J. D., Echeverry, D. F., & Lozano Moncada, C. A. (2019). A methodological proposal for the technical conception of microgrids. Revista Ingenierías Universidad De Medellín, 18(34), 199-218. https://doi.org/10.22395/rium.v18n34a12

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in