Degradation of Ethylene Glycol Through Photo-Fenton Heterogeneous System

Alba Nelly Ardila-Arias | Bio
Politécnico Colombiano Jaime Isaza Cadavid
Eliana Berrío-Mesa | Bio
Politécnico Colombiano Jaime Isaza Cadavid
Erasmo Arriola-Villaseñor | Bio
Politécnico Colombiano Jaime Isaza Cadavid
William Fernando Álvarez-Gómez | Bio
Politécnico Colombiano Jaime Isaza Cadavid
José Alfredo Hernández-Maldonado | Bio
Instituto Politécnico Nacional (UPIIG-IPN)
Trino Armando Zepeda-Partida | Bio
Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México CNyN-UNAM
Luis Antonio Ortíz-Frade | Bio
Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ)
Rolando Barrera-Zapata | Bio
Universidad de Antioquia UdeA

Abstract

This work describes the ethylene glycol degradation in a photo-Fenton heterogeneous system. Iron-doped TiO2 photocatalysts prepared by different methods (incipient wet impregnation and sol-gel method), as well as the corresponding un-doped material were examined in this process. Different values of initial pH and H2O2 concentration were tested during the experiments. A lower photoactivity was observed for the un-doped materials than for the Fe-doped materials. Optimum results of initial pH and H2O2 concentrations were found to be 3.0 and 1,000 mg/L, respectively.  Furthermore, the highest degradation percentage of ethylene glycol (61 %) was achieved for the material synthetized by sol-gel method. Such catalytic performance is explained on the basis of structural/morphological and electronic characterization results, reached by XRD, UV-vis DRS and XPS techniques. To the best of our knowledge, this is the first report related with the ethylene glycol degradation using Iron-doped TiO2 in a photo-Fenton heterogeneous system.

References

  1. [1] A. N. Ardila Arias, E. Arriola Villaseñor, J. Reyes Calle, E. Berrio Mesa, and G. Fuentes Zurita, “Mineralización de etilenglicol por foto-Fenton asistido con ferrioxalato,” Rev. Int. Contam. Ambient., vol. 32, n.º 2, pp. 213-226, 2016. DOI: http://dx.doi.org/10.20937/RICA.2016.32.02.07

  2. [2] B. D. McGinnis, V. D. Adams, and E. J. Middlebrooks, “Degradation of ethylene glycol in photo Fenton systems,” Water Res., vol. 34, n.º 8, pp. 2346-2354, 2000. DOI: http://dx.doi.org/10.1016/S0043-1354(99)00387-5

  3. [3] B. Dietrick McGinnis, V. Dean Adams, and E. Joe Middlebrooks, “Degradation of ethylene glycol using Fenton’s reagent and UV,” Chemosphere, vol. 45, n.º 1, pp. 101-108, 2001. DOI: http://dx.doi.org/10.1016/S0045-6535(00)00597-X

  4. [4] J. Araña, J. A. Ortega Méndez, J. A. Herrera Melián, J. M. Doña Rodríguez, O. González Díaz, and J. Pérez Peña, “Thermal effect of carboxylic acids in the degradation by photo-Fenton of high concentrations of ethylene glycol,” Appl. Catal. B Environ., vol. 113-114, pp. 107-115, 2012. DOI: http://dx.doi.org/10.1016/j.apcatb.2011.11.025

  5. [5] C. E. Díaz-Uribe, W. A. Vallejo L., and J. Miranda, “Photo-Fenton oxidation of phenol with Fe(III)-tetra-4- carboxyphenylporphyrin/SiO2 assisted with visible light,” J. Photochem. Photobiol. A Chem., vol. 294, pp. 75-80, 2014. DOI: http://dx.doi.org/10.1016/j.jphotochem.2014.08.004

  6. [6] T. Tachikawa et al., “Visible Light-Induced Degradation of Ethylene Glycol on Nitrogen-Doped TiO2 Powders,” J. Phys. Chem. B, vol. 110, n.º 26, pp. 13158-13165, 2006. DOI: http://dx.doi.org/10.1021/jp0620217

  7. [7] T. Aguilar et al., “A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap,” Chem. Phys. Lett., vol. 571, pp. 49-53, 2013. DOI: http://dx.doi.org/10.1016/j.cplett.2013.04.007

  8. [8] D. V. Wellia, Q. C. Xu, M. A. Sk, K. H. Lim, T. M. Lim, and T. T. Y. Tan, “Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol-gel method,” Appl. Catal. A Gen., vol. 401, n.º 1-2, pp. 98-105, 2011. DOI: http://dx.doi.org/10.1016/j.apcata.2011.05.003

  9. [9] A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, “Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method,” Results Phys., vol. 7, pp. 3007-3015, 2017. DOI: http://dx.doi.org/10.1016/j.rinp.2017.07.066

  10. [10] Y. Liu et al., “Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles,” Appl. Surf. Sci., vol. 257, n.º 18, pp. 8121-8126, 2011. DOI: http://dx.doi.org/10.1016/j.apsusc.2011.04.121

  11. [11] C. Yu, Q. Fan, Y. Xie, J. Chen, Q. shu, and J. C. Yu, “Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol,” J. Hazard. Mater., vol. 237-238, pp. 38-45, 2012. DOI: http://dx.doi.org/10.1016/j.jhazmat.2012.07.072

  12. [12] A. Montesinos-Castellanos and T. A. Zepeda, “High hydrogenation performance of the mesoporous NiMo/Al(Ti, Zr)-HMS catalysts,” Microporous Mesoporous Mater., vol. 113, n.º 1-3, pp. 146-162, 2008. DOI: http://dx.doi.org/10.1016/j.micromeso.2007.11.012

  13. [13] P. Reyes, H. Rojas, and J. L. G. Fierro, “Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts,” Appl. Catal. A Gen., vol. 248, no. 1-2, pp. 59-65, 2003. DOI: http://dx.doi.org/10.1016/S0926-860X(03)00148-0

  14. [14] C. Adán, A. Bahamonde, I. Oller, S. Malato, and A. Martínez-Arias, “Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts,” Appl. Catal. B Environ., vol. 144, n.º 1, pp. 269-276, 2014. DOI: http://dx.doi.org/10.1016/j.apcatb.2013.07.027

  15. [15] S. H. Lin, C. H. Chiou, C. K. Chang, and R. S. Juang, “Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation,” J. Environ. Manage., vol. 92, n.º 12, pp. 3098-3104, 2011. DOI: http://dx.doi.org/10.1016/j.jenvman.2011.07.024

  16. [16] H. B. Hadjltaief, M. Ben Zina, M. E. Galvez, and P. Da Costa, “Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay,” Comptes Rendus Chim., vol. 18, n.º 10, pp. 1161-1169, 2015. DOI: http://dx.doi.org/10.1016/j.crci.2015.08.004

  17. [17] E. Martin Del Campo, R. Romero, G. Roa, E. Peralta-Reyes, J. Espino-Valencia, and R. Natividad, “Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC,” Fuel, vol. 138, pp. 149-155, 2014. DOI: http://dx.doi.org/10.1016/j.fuel.2014.06.014

  18. [18] Z. Shiyun, Z. Xuesong, L. Daotang, and C. Weimin, “Ozonation of naphthalene sulfonic acids in aqueous solutions: Part II - Relationships of their COD, TOC removal and the frontier orbital energies,” Water Res., vol. 37, n.º 5, pp. 1185-1191, 2003. DOI: http://dx.doi.org/10.1016/S0043-1354(02)00178-1

  19. [19] Z. Shiyun, Z. Xuesong and L. Daotang, “Ozonation of naphthalene sulfonic acids in aqueous solutions: Part I- Relationships of their COD, TOC removal and the frontier orbital energies,” Water Res., vol. 37, n.º 5, pp. 1237-1243, 2002. DOI: http://dx.doi.org/10.1016/S0043-1354(01)00331-1

  20. [20] L. Türker, T. Atalar, S. Gümüş, and Y. Çamur, “A DFT study on nitrotriazines,” J. Hazard. Mater., vol. 167, n.º 1-3, pp. 440-448, 2009. DOI: http://dx.doi.org/10.1016/j.jhazmat.2008.12.134

How to Cite
Ardila-Arias, A. N., Berrío-Mesa, E., Arriola-Villaseñor, E., Álvarez-Gómez, W. F., Hernández-Maldonado, J. A., Zepeda-Partida, T. A., Ortíz-Frade, L. A., & Barrera-Zapata, R. (2019). Degradation of Ethylene Glycol Through Photo-Fenton Heterogeneous System. Revista Ingenierías Universidad De Medellín, 18(35), 91-109. https://doi.org/10.22395/rium.v18n35a6

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in