Use of Blast Furnace Slag and Steel in Asphalt Mixtures: Review

Hugo Alexander Rondón Quintana | Bio
Universidad Distrital Francisco José de Caldas
Marcio Muniz de Farias | Bio
Universidade de Brasília
Fredy Alberto Reyes Lizcano | Bio
Pontificia Universidad Javeriana

Abstract

In the manufacture of asphalt mixtures, large quantities of natural stone aggregates are consumed, which has a negative impact on the environment. These aggregates can be partially or totally replaced by others that are disposed of in dumps and produced by steel companies, such as blast furnace slag (BFS) and steel (SS). These last two materials have chemical and physical properties that make them suitable for use in multiple applications such as road construction, maintenance and rehabilitation. The article presents a review of the state of knowledge of the use of BFS and SS in the production of asphalt mixtures, describes and defines both materials, presents the environmental problems, their toxicological risk of use, their chemical and physical properties, the advantages and limitations of use and the way they have been studied to be used as stone aggregates of asphalt mixtures. Based on the bibliographic review, the authors at the end of the article present some recommendations to continue the studies tending to substitute natural stone aggregates with BFS and SS in the manufacture of asphalt mixtures.

References

  1. [1] M. Pasetto y N. Baldo, “Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags,” Journal of Hazardous Materials, vol. 181, N.° 1–3, pp. 938–948. 2010. DOI: 10.1016/j.jhazmat.2010.05.104.

  2. [2] D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. y Shepker, M.A. Zak, “Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags,” Environmental Science and Technology, vol. 34, N.° 8, pp. 1576–1582. 2000. DOI: 10.1021/es9906002.

  3. [3] H. Motz y J. Geiseler, “Products of steel slags an opportunity to save natural resources,” Waste Management, vol. 21, pp. 285–293. 2001. DOI: 10.1016/S0956–053X(00)00102–1.

  4. [4] H. Shen y E. Forssberg, “An overview of recovery of metals from slags,” Waste Management, vol. 23, pp. 933–949. 2003. DOI: 10.1016/S0956–053X(02)00164–2.

  5. [5] M. Maslehuddin, A.M. Sharif, M. Shameem, M. Ibrahim y M.S. Barry, “Comparison of properties of steel slag and crushed limestone aggregate concretes,” Construction and Building Materials, vol. 17, N.° 2, pp. 105–112. 2003. DOI: 10.1016/S0950–0618(02)00095–8.

  6. [6] S. Nouvion, A. Jullien, M. Sommier y V. Basuyau, “Environmental modeling of blast furnace slag aggregate production,” Road Materials and Pavement Design, vol. 10, N.° 4, pp. 715–745. 2009.

  7. [7] J. Geiseler, “Use of steelworks slag in Europe,” Waste Management, vol. 16, N.° 1–3, pp. 59–63. 1996. DOI: 10.1016/S0956–053X(96)00070–0.
  8. [8] M. Pasetto y N. Baldo, “Mix design and performance analysis of asphalt concretes with electric arc furnace slag,” Construction and Building Materials, vol. 25, N.° 8, pp. 3458–3468. 2011. DOI: 10.1016/j.conbuildmat.2011.03.037.

  9. [9] L. Wintenborn y J. Green, “Steelmaking slag: a safe and valuable product,” National Slag Association. 1998.

  10. [10] I.M. Asi, H.Y. Qasrawi y F.I. Shalabi, “Use of steel slag aggregate in asphalt concrete mixes,” Canadian Journal of Civil Engineering, vol. 34, pp. 902–911. 2007. DOI: 10.1139/L07–025.

  11. [11] I. Barišić, I.N. Grubeša y B.H. Kutuzović. “Multidisciplinary approach to the environmental impact of steel slag reused in road construction,” Road Materials and Pavement Design, vol. 18, pp. 1–16. 2016. DOI: 10.1080/14680629.2016.1197143.

  12. [12] A. Prapidis y G. Doulis, “Use of slag in skid resistant asphalt mixes based on mechanical and environmental criteria,” Presentado en Proc. 5th International Exhibition & Conference on Environmental Technology, Athens, Greece. 2005.

  13. [13] A.M. Fällman, “Leaching of chromium and barium from steel slag in laboratory and field tests—a solubility controlled process?,” Waste Management, vol. 20, N.° 2 , p p. 149–154. 2000. DOI: 10.1016/S0956–053X(99)00313–X.

  14. [14] S. Sorlini, A. Sanzeni y L. Rondi, “Reuse of steel slag in bituminous paving mixtures,” Journal of Hazardous Materials, vol. 209–210, pp. 84–91. 2012. DOI: 10.1016/j.jhazmat.2011.12.066.

  15. [15] P. Chaurand, J. Rose, V. Briois, L. Olivi, J.–L. Hazemann, O. Proux, J. Domas y J.–Y. Bottero, “Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach,” Journal of Hazardous Materials, Vol. 139, N.° 3, pp. 537–542. 2007. DOI: 10.1016/j.jhazmat.2006.02.060.

  16. [16] R. Milačič, T. Zuliani, T. Oblak, A. Mladenovič, A. and J.Š. Ančar, (2011). “Environmental impacts of asphalt mixes with electric arc furnace steel slag,” Journal of Environmental Quality, vol. 40, N.° 4, pp. 1153–1161. DOI: 10.2134/jeq2010.0516.

  17. [17] J. Yan, C. Bäverman, L. Moreno y I. Neretnieks, “Evaluation of the time–dependent neutralising behaviours of MSWI bottom ash and steel slag,” Science of the Total Environment, vol. 216, N.° 1–2, pp. 41–54, 1998. DOI: 10.1016/S0048–9697(98)00133–8.

  18. [18] G. S. Roadcap, W. R. Kelly y C. M. Bethke, “Geochemistry of extremely alkaline (pH> 12) ground water in slag – fill aquifers,” Ground Water, vol. 43, N.° 6, pp. 806–816, 2005. DOI: 10.1111/j.1745–6584.2005.00060.x.

  19. [19] H. Seron Pereira, A.J. Manzi Gama, M. Sartori de Camargo y G.H. Korndorfer, “Reatividade de escórias silicatadas da indústria siderúrgica,” Ciênc. Agrotec., lavras, vol. 34, N.° 2, pp. 382–390, 2010.

  20. [20] D.M. Proctor, E.C. Shay, K.A. Fehling y B.L. Finley, “Assessment of human health and ecological risks posed by the uses of steel–industry slags in the environment,” Human and Ecological Risk Assessment, vol. 8, N.° 4, pp. 681–711, 2002.

  21. [21] FHWA – Federal Highway Administration Research and Technology. Coordinating, Developing, and Delivering Highway Transportation Innovations, User Guidelines for Waste and Byproduct Materials in Pavement Construction, Report Publication Number: FHWA–RD–97–148, 2008.

  22. [22] J.L. Marriaga y P. Claisse, “The influence of the blast furnace slag replacement on chloride penetration in concrete”. Ingeniería e Investigación, vol. 31, N.° 2, pp. 38–47, 2011.

  23. [23] NSA, National Slag Association, [En línea], acceso abril de 2016, Disponible: http://nationalslag.org/blast–furnace–slag

  24. [24] H.G. Van Oss, Slag–Iron and Steel, U.S. Geologycal Survey Minerals Yearbook, Servicio Geológico de los Estados: USGS, 2003.

  25. [25] G.D. Airey, A.C. Collop y N.H. Thom, “Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates,” Presentado en 8th Conference on Asphalt Pavements for Southern Africa (CAPSA’04), 2004.

  26. [26] B. Das, S. Prakash, P.S.R. Reddy y V.N. Misra. “An overview of utilization of slag and sludge from steel industries,” Resources, Conservation and Recycling, vol. 50, pp. 40–57, 2007. DOI: 10.1016/j.resconrec.2006.05.008.

  27. [27] A. Jamshidi, K. Kurumisawa, T. Nawa, M. Jize y G. White, “Performance of pavements incorporating industrial byproducts: a state–of–the–art study,” Journal of Cleaner Production, vol. 164, pp. 367–388, 2017. DOI: 10.1016/j.jclepro.2017.06.223.

  28. [28] R. Dippenaar. “Industrial uses of slag (the use and re–use of iron and steelmaking slags),” Ironmaking and Steelmaking, vol. 32, N.° 1, pp. 35–36, 2005.

  29. [29] L.J.M. Houben, S. Akbarnejad y A.A.A. Molenaar, “Performance of pavements with blast furnace base courses,” Presentado en GeoShanghai 2010 –International Conference, Paving Materials and Pavement Analysis, Geotechnical Special Publication N.° 203 (pp. 476–483), China, 2010.

  30. [30] C. Shi, “Steel slag—its production, processing, characteristics, and cementitious properties,”

  31. Journal of Materials in Civil Engineering, vol. 16, N.° 3, pp. 230–236, 2004. DOI: 10.1061/(ASCE)0899–1561(2004)16:3(230).
  32. [31] S.I. Abu–Eishah, A.S. El–Dieb y M.S. Bedir, “Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region,” Construction and Building Materials, vol. 34, pp.249–256, 2012. DOI: 10.1016/j.conbuildmat.2012.02.012.

  33. [32] X. Guo y H. Shi, “Utilization of steel slag powder as a combined admixture with ground granulated blast–furnace slag in cement based materials,” Journal of Materials in Civil Engineering. vol. 25, N.° 12, pp. 1990–1993, 2013. DOI: 10.1061/(ASCE)MT.1943–5533.0000760.

  34. [33] J.J. Emery, “Slag Utilization in Pavement Construction,” Presentado en Extending aggregate resources: a symposium sponsored by ASTM Committee D–4 on Road and Paving Materials, EE. UU., 1982. DOI: 10.1520/STP32459S.

  35. [34] D.E. Jones, “Application of steel plant by–products to roadworks,” Presentado en Proceedings—Conference of the Australian Road Research Board, v 11, 11th ARRB Conference, 1982.

  36. [35] N.A. León, N.R. Rojas, B.U. Suárez y O. Bustamante, “Experimental evaluation of silicon – calcareous units from blast furnace slag and hydraulic lime for masonry”. Dyna, vol. 76, N.° 160, pp. 247–254, 2009.

  37. [36] Q. Wang, P. Yan y G. Mi, “Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement,” Construction and Building Materials, vol. 35, pp. 8–14, 2012. DOI: 10.1016/j.conbuildmat.2012.02.085.

  38. [37] H.A. Rondón, J.C., Ruge, D., Patiño, H. Vacca, F.A. Reyes y M. Farias, “Use of blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture,” Journal of Materials in Civil Engineering, vol. 30, N.° 10, 04018244, 2018. doi:10.1061/(ASCE)MT.1943–5533.0002409

  39. [38] A. Al–Hdabi y H. Al Nageim, “Improving asphalt emulsion mixtures properties containing cementitious filler by adding GGBS,” Journal of Materials in Civil Engineering, vol. 29, N.° 5, 04016297–1, 2016. doi:10.1061/(ASCE)MT.1943–5533.0001859.

  40. [39] A. Misra, D. Biswas y S. Upadhyaya, “Physico–mechanical behavior of self–cementing class C fly ash–clay mixtures,” Fuel, vol. 84, N.° 11, pp. 1410–1422, 2005. DOI: 10.1016/j.fuel.2004.10.018.

  41. [40] A.I. Nassar, M.K. Mohammedb, N. Thom y T. Parry, “Mechanical, durability and microstructure properties of Cold Asphalt Emulsion Mixtures with different types of filler,” Construction and Building Materials, vol. 114, pp. 352–363, 2016. DOI: 10.1016/j.conbuildmat.2016.03.112.

  42. [41] A. Modarres y M. Rahmanzadeh, “Application of coal waste powder as filler in hot mix asphalt,” Construction and Building Materials, vol. 66, pp. 476–483. 2014. DOI: 10.1016/j.conbuildmat.2014.06.002.

  43. [42] R. Muniandy, E. Aburkaba y L. Mahdi, “Effect of mineral filler type and particle size on asphalt–filler mastic and stone mastic asphalt laboratory measured properties,” Australian Journal of Basic and Applied Sciences, vol. 7, N.° 11, pp. 475–787, 2013.

  44. [43] T. Ozbakkaloglu, L. Gu y A.F. Pour, “Normal and high–strength concretes incorporating air–cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior,” Construction and Building Materials, vol. 126, pp. 138–146, 2016. DOI: 10.1016/j.conbuildmat.2016.09.015.

  45. [44] J. Xie, S. Wu, J. Lin, J. Cai, Z. Chen y W. Wei, “Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization and moisture damage investigation,” Construction and Building Materials, vol. 36, pp. 467–474, 2012. DOI: 10.1016/j.conbuildmat.2012.06.023.

  46. [45] G. Wang, Y. Wang y Z. Gao, “Use of steel slag as a granular material: Volume expansion prediction and usability criteria,” Journal of Hazardous Materials, vol. 184, N.° 1–3, pp. 555–560, 2010. DOI: 10.1016/j.jhazmat.2010.08.071.

  47. [46] S. Akbarnejad, L.J.M. Houben y A.A.A. Molenaar, “Application of aging methods to evaluate the long–term performance of road bases containing blast furnace slag materials,” Road Materials and Pavement Design, vol. 15, N.° 3, pp. 488–506, 2014. DOI: 10.1080/14680629.2014.907196.

  48. [47] S. Wu, Y. Xue, Q. Ye y Y. Chen, “Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures,” Building and Environment, vol. 42, N.° 7, pp. 2580–2585, 2007. DOI: 10.1016/j.buildenv.2006.06.008.

  49. [48] A.M. Dunster, “The use of blastfurnace slag and steel slag as aggregates,” Presentado en 4th European symposium on performance of bituminous and hydraulic materials in pavements, Nottingham, 11–12 april of 2002. pp. 257–260.

  50. [49] F. Kehagia, “Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates,” Waste Management and Research, vol. 27, N.° 3, pp. 288–294, 2009. DOI: 10.1177/0734242X08092025.

  51. [50] Y. Xue, S. Wu, H. Hou y J. Zha, “Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture,” Journal of Hazardous Materials, vol. 138, N.° 2, pp. 261–268, 2006. DOI: 10.1016/j.jhazmat.2006.02.073.

  52. [51] J. Zhao, D. Wang, P. Yan, D. Zhang y H. Wang, “Self–cementitious property of steel slag powder blended with gypsum,” Construction and Building Materials, vol. 113, pp. 835–842, 2016. DOI: 10.1016/j.conbuildmat.2016.03.102.

  53. [52] H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan y H. Chen, “An overview of utilization of steel slag,” Procedia Environmental Sciences, vol. 16, pp. 791–801, 2012. DOI: 10.1016/j.proenv.2012.10.108.

  54. [53] P. Ahmedzade y B. Sengoz, “Evaluation of steel slag coarse aggregate in hot mix asphalt concrete,” Journal of Hazardous Materials, vol. 165, pp. 300–305, 2009. DOI: 10.1016/j.jhazmat.2008.09.105.

  55. [54] A. Kavussi y M.J. Qazizadeh, “Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging,” Construction and Building Materials, vol. 72, pp. 158–166, 2014. DOI: 10.1016/j.conbuildmat.2014.08.052.

  56. [55] V. Haritonovs, M. Zaumanis, G. Brencis y J. Smirnovs, “Use of unconventional aggregates in hot mix asphalt concrete,” Baltic Journal of Road and Bridge Engineering, vol. 9, N.° 4, pp. 276–282, 2014. DOI: 10.3846/bjrbe.2014.34.

  57. [56] M. De Oliveira Polese, G. Lopes Carreiro, M. Gomes da Silva y M. Ribas Silva, “Caracterização Microestrutural da Escória de Aciaria,” Revista Matéria, vol. 11, N.° 4, pp. 444–454, 2006.

  58. [57] I.Z. Yildirim y M. Prezzi, “Geotechnical properties of fresh and aged basic oxygen furnace steel slag,” Journal of Materials in Civil Engineering, vol. 27, N.° 12, 2015. DOI: 10.1061/(ASCE)MT.1943–5533.0001310.

  59. [58] M. Pasetto y N. Baldo, “Laboratory investigation on foamed bitumen bound mixtures made with steel slag, foundry sand, bottom ash and reclaimed asphalt pavement,” Road Materials and Pavement Design, vol. 13, N.° 4, pp. 691–712, 2012. DOI: 10.1080/14680629.2012.742629.

  60. [59] M.M.A. Aziz, M.R. Hainin, H. Yaacob, Z. Ali, F.L. Chang y A.M. Adnan, “Characterization and utilization of steel slag for the construction of roads and highways,” Materials Research Innovations, vol. 18, S6, pp. 255–259, 2014. DOI: 10.1179/1432891714Z.000000000967.

  61. [60] J.M. Manso, J.J. González y J.A. Polanco, “Electric arc furnace slag in concrete,” Journal of Materials in Civil Engineering, vol. 16, N.° 6 , p p. 6 39–645, 2 004. DOI: 10.1061/(ASCE)0899–1561(2004)16:6(639).

  62. [61] H. Qasrawi, “The use of steel slag aggregate to enhance the mechanical properties of recycled aggregate concrete and retain the Environment,” Construction and Building Materials, vol. 54, pp. 298–304, 2014. DOI: 10.1016/j.conbuildmat.2013.12.063.

  63. [62] S. Pamukcu y A. Tuncan, “Laboratory characterization of cementstabilized iron–rich slag for reuse in transportation facilities,” Transportation Research Record, N.° 1424, pp. 25–33, 1993.

  64. [63] J.M. Manso, V. Ortega, J.A. Polanco y J. Setién, “The use of ladle furnace slag in soil stabilization,” Construction and Building Materials, vol. 40, pp. 126–34. 2013. DOI: 10.1016/j.conbuildmat.2012.09.079.

  65. [64] S. Aiban, “Utilization of steel slag aggregate for road bases,” Journal of Testing and Evaluation, vol. 34, N.° 1, pp. 1–11, 2006. DOI: 10.1520/JTE12683.

  66. [65] S. Hosseini, S.M. Soltani, P.S. Fennell, T.S.Y. Choong y M.K. Aroua, “Production and applications of electric–arc–furnace slag as solid waste in environmental technologies: a review,” Environmental Technology Reviews, vol. 5, N.° 1, pp. 1–11, 2016. DOI: 10.1080/21622515.2016.1147615.

  67. [66] R.M. Prado, W. Natale, F.M. Fernandes y M.C.M. Corrêa, “Reatividade de uma escória de siderurgia em um latossolo vermelho distrófico,” R. Bras. Ci. Solo, vol. 28, pp. 197–205, 2004.

  68. [67] M.F. Sobral, C.W.A. do Nascimento, K.P.V. da Cunha, H.A. Ferreira, A.J. Silva y F.B.V. Silva, “Escória de siderurgia e seus efeitos nos teores de nutrientes e metais pesados em cana–de–açúcar,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 15, N.° 8, pp.867–872, 2011.

  69. [68] S. Radosavljevic, D. Milic and M. Gavrilovski, “Mineral processing of a converter slag and its use in iron ore sintering,” Magnetic and Electrical Separation, vol. 7, N.° 4, pp. 201–211, 1996. DOI: 10.1155/1996/31471.

  70. [69] M. Sumayya, M. Romeela y K. Prakash, “Characterization of electric arc furnace slags as concrete aggregate in a small island developing state: A preliminary study,” Construction and Building Materials, vol. 105, pp. 459–464, 2016. DOI: 10.1016/j.conbuildmat.2015.12.169.

  71. [70] S. Hesami, M. Ameri, H. Goli y A. Akbari, “Laboratory investigation of moisture susceptibility of warm–mix asphalt mixtures containing steel slag aggregates,” International Journal of Pavement Engineering, vol. 16, N.° 8, pp. 745–759, 2015. DOI: 10.1080/10298436.2014.953502.

  72. [71] M. Arabani y A.R. Azarhoosh, “The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures,” Construction and Building Materials, Vol. 35, pp. 1–7, 2012. DOI: 10.1016/j.conbuildmat.2012.02.036.

  73. [72] T. Sofilić, A. Mladenovič y U. Sofilić, “Defining of EAF steel slag application possibilities in asphalt mixture production,” Journal of Environmental Engineering and Landscape Management, vol. 19, N.°2, pp. 148–157, 2011. DOI: 10.3846/16486897.2011.580910.

  74. [73] M. Tossavainen, F. Engstrom, Q. Yang, N. Menad, M. Lidstrom y B. Bjorkman, “Characteristics of steel slag under different cooling conditions,” Waste Management, vol. 27, pp. 1335–1344, 2007. DOI: 10.1016/j.wasman.2006.08.002.

  75. [74] B.V. Kök y N. Kuloğlu, “Effects of steel slag usage as aggregate on indirect tensile and creep modulus of hot mix asphalt,” Gazi University Journal of Sience, vol. 21, N.° 3, pp. 97–103, 2008.

  76. [75] G. Wang, “Determination of the expansion force of coarse steel slag aggregate,” Construction and Building Materials, vol. 24, pp. 1961–1966, 2010. DOI: 10.1016/j.conbuildmat.2010.04.004.

  77. [76] M. Ameri, S. Hesami y H. Goli, “Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag,” Construction and Building Materials, vol. 49, pp. 611–617, 2013. DOI: 10.1016/j.conbuildmat.2013.08.034.

  78. [77] J. Xie, J. Chen, S. Wu, J. Lin y W. Wei, “Performance characteristics of asphalt mixture with basic oxygen furnace slag,” Construction and Building Materials, vol. 38, pp. 796–803, 2013. DOI: 10.1016/j.conbuildmat.2012.09.056.

  79. [78] G.H. Shafabakhsh y O.J. Ani, “Experimental investigation of effect of nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates,” Construction and Building Materials, vol. 98, pp. 692–702, 2015. DOI: 10.1016/j.conbuildmat.2015.08.083.

  80. [79] G.H. Shafabakhsh, O.J. Ani y M. Talebsafa, “Artificial neural network modeling (ANN) for predicting rutting performance of nano–modified hot–mix asphalt mixtures containing steel slag aggregates,” Construction and Building Materials, vol. 85, pp. 136–143, 2015a. DOI: 10.1016/j.conbuildmat.2015.03.060.

  81. [80] L. Hunt y G. Boyle, “Steel slag in hot mix asphalt concrete,” Final Report, State Research Project #511, Oregon Department of Transportation, 2000.

  82. [81] D.H. Shen, C.M. Wu y J.C. Du, “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture,” Construction and Building Materials. vol. 23, pp. 453–461, 2009. DOI: 10.1016/j.conbuildmat.2007.11.001.

  83. [82] Y. Xue, H. Hou, S. Zhu y J. Zha, “Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: pavement performance and environmental impact,” Construction and Building Materials, vol. 23, N.° 2, pp.989–96, 2009. DOI: 10.1016/j.conbuildmat.2008.05.009.

  84. [83] J. Xie, Z. Chen, L. Pang y S. Wu, “Implementation of modified pull–off test by UTM to investigate bonding characteristics of bitumen and basic oxygen furnace slag (BOF),” Construction and Building Materials, vol. 57, pp. 61–68, 2014. DOI: 10.1016/j.conbuildmat.2014.01.083.

  85. [84] JEGEL. “Steel slag aggregates use in hot mix asphalt concrete,” Final report prepared for the steelmaking slag Technical Committee, Toronto, John Emery Geotechnical Engineering Limited (JEGEL), 1993.

  86. [85] J. Emery, “Steel slag utilization in asphalt mixes,” National Slag Association MF 186–1. Canadian Technical Asphalt Association Proceedings, 1986, 11 p.

  87. [86] W.T. Kuo y C.Y. Shu. “Application of high–temperature rapid catalytic technology to forecast the Volumetric stability behavior of containing steel slag mixtures,” Construction and Building Materials, vol. 50, pp. 463–470, 2014. DOI: 10.1016/j.conbuildmat.2013.09.030.

  88. [87] Q. Li, H. Ding, A. Rahman y D. He, “Evaluation of Basic Oxygen Furnace (BOF) material into slag–based asphalt concrete to be used in railway substructure”. Construction and Building Materials, vol. 115, pp. 593–601, 2016. DOI: 10.1016/j.conbuildmat.2016.04.085.

  89. [88] M. Ameri y B. Behnood, “Laboratory studies to investigate the properties of CIR Mixes containing steel slag as a substitute for virgin aggregates,” Journal of Construction and Building Materials, vol. 26, N.° 1, pp. 475–480, 2012. DOI: 10.1016/j.conbuildmat.2011.06.047.

  90. [89] Z. Chen, S. Wu, J. Wen, M. Zhao, M. Yi y J. Wan, “Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture,” Construction and Building Materials, vol. 93, pp. 911–918, 2015. DOI: 10.1016/j.conbuildmat.2015.05.070.

  91. [90] A. Hiltunen, “The influence of chemical and physical properties on the utilization of slags,” presentado en Sixth International Conference on Molten Slags, Fluxes and Salts, Finland, 2000.

  92. [91] B.J. Reeves y W.K. Lu, “High temperature modification of steelmaking slags by the addition of fayalite slag to react a Volumetrically stable aggregate,” Presentado en Sixth International Conference on Molten Slags, Fluxes and Salts, Finland, 2000.

  93. [92] Y. Shi, H. Chen, J. Wang y Q. Feng, “Preliminary investigation on the pozzolanic activity of superfine steel slag,” Construction and Building Materials, vol. 82, pp. 227–234, 2015.

  94. [93] M. Tiifekqi, A. Demirbas y H. Genc, “Evaluation of steel furnace slags as cement additives,” Cement and Concrete Research. vol. 27, N.° 11, pp. 1713–1717, 1997. DOI: 10.1016/S0008–8846(97)00158–0.

  95. [94] H. Wen, E. Wu y S. Bhusal, “Evaluation of steel slag as hot mix asphalt aggregate,” Final report, Edw. C. Levy Co. and Nucor Steel Seattle, Inc., Seattle, WA, 2014.

  96. [95] H. Ziari, y M.M. Khabiri, “Preventive maintenance of flexible pavement and mechanical properties of steel slag asphalt,” Journal of Environmental Engineering and Landscape Management, vol. 15, N.° 3, pp. 188b–192b., 2007. DOI: 10.1080/16486897.2007.9636928.

  97. [96] .A. Oluwasola, M.R. Hainin, M.M.A. Aziz, H. Yaacob y M.N.M. Warid, “Potentials of steel slag and copper mine tailings as construction materials,” Materials Research Innovations, vol. 18, S6, pp. 250–254, 2014. DOI: 10.1179/1432891714Z.000000000966.

  98. [97] H. Wen, S. Wu y S. Bhusal, “Performance evaluation of asphalt mixes containing steel slag aggregate as a measure to resist studded tire wear,” Journal of Materials in Civil Engineering, vol. 28, N.° 5, 2016. DOI: 10.1061/(ASCE)MT.1943–5533.0001475.

  99. [98] U. Bagampadde, H.I.A. Wahhab y S.A. Aiban, “Optimization of steel slag aggregates for bituminous mixes in Saudi Arabia,” Journal of Materials in Civil Engineering, vol. 11, N.° 1, pp. 30–35, 1999. DOI: 10.1061/(ASCE)0899–1561(1999)11:1(30).

  100. [99] L.S. Huang, D.F. Lin, H.L. Luo y P.C. Lin, “Effect of field compaction mode on asphalt mixture concrete with basic oxygen furnace slag,” Construction and Building Materials, vol. 34, pp. 16–27, 2012. DOI: 10.1016/j.conbuildmat.2012.02.008.

  101. [100] S.–H. Chen, J.–D. Lin, D. Huang y C.–T. Hung, “Performance of replacing traditional natural aggregates in dense grade asphalt concrete with basic oxygen furnace slag,” presentado en Geo–Hubei 2014 International Conference on Sustainable Civil Infrastructure, China, pp. 107–114, 2014. DOI: 10.1061/9780784478554.014.

  102. [101] E.A. Oluwasola, M.R. Hainin y M.M.A. Aziz, “Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction,” Transportation Geotechnics, vol. 2, pp. 47–55, 2015. DOI: 10.1016/j.trgeo.2014.09.004.

  103. [102] Z. Chen, J. Xie, Y. Xiao, J. Chen y S. Wu, “Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder,” Construction and Building Materials, vol. 64, pp. 60–66, 2014. DOI: 10.1016/j.conbuildmat.2014.04.074.

  104. [103] I. Liapis y S. Likoydis, “Use of electric arc furnace slag in thin skid–resistant surfacing,” Procedia –Social and Behavioral Sciences, vol. 48, pp. 907–918, 2012. DOI: 10.1016/j.sbspro.2012.06.1068.

  105. [104] I.S. Bessa, V. Castelo–Branco y J. Barbosa–Soares, “Evaluation of polishing and degradation resistance of natural aggregates and steel slag using the aggregate image measurement system,” Road Materials and Pavement Design, vol. 15, N.° 2, pp. 385–405, 2014. DOI: 10.1080/14680629.2014.883323.

  106. [105] Z. Chen, S. Wu, Y. Xiao, M. Zhao y J. Xie, “Feasibility study of BOF slag containing honeycomb particles in asphalt mixture,” Construction and Building Materials, vol. 124, pp. 550–557, 2016. DOI: 10.1016/j.conbuildmat.2016.07.128.

  107. [106] L.S. Huang, G.L. Zou, H.L. Luo y C.C. Chao, “In–situ temperature effects in basic oxygen furnace slag asphalt concrete pavement,” International Journal of Pavement Research and Technology, vol. 6, N.° 4, pp. 386–94, 2013.

  108. [107] D.F. Lin, L.H. Chou, Y.K. Wanga y H.L. Luo, “Performance evaluation of asphalt concrete test road partially paved with industrial waste –Basic oxygen furnace slag,” Construction and Building Materials, vol. 78, pp. 315–323, 2015. DOI: 10.1016/j.conbuildmat.2014.12.078.

  109. [108] Y. Xue, H. Hou y S. Zhu, “Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study,” Chemical Engineering Journal, vol. 147, N.° 2–3, pp. 272–279, 2009a. DOI: 10.1016/j.cej.2008.07.017.

  110. [109] Y.C. Hsu, “The evaluation of temperature on asphalt concrete with basic oxygen furnace slag mixed,” Tesis de maestría, Ingeniería, I–Shou University, Taiwan, 2009.

  111. [110] N.A. Ali, J.S. Chan, T. Papagiannakis, E.G. Theriault y A.T. Bergan, “The use of steel slag in asphaltic concrete,” ASTM Special Technical Publication, pp. 3–18, 1992.

  112. [111] C. Li, Z. Chen, S. Wu, B. Li, J. Xie y Y. Xiao, “Effects of steel slag fillers on the rheological properties of asphalt mastic,” Construction and Building Materials, vol. 145, N.° 1, pp. 383–391. 2017. DOI: 10.1016/j.conbuildmat.2017.04.034.

  113. [112] D. Topini, E. Toraldo, L. Andena y E. Mariani, “Use of recycled fillers in bituminous mixtures for road pavements,” Construction and Building Materials, vol. 159, pp. 189–197, 2018. DOI: 10.1016/j.conbuildmat.2017.10.105.

How to Cite
Rondón Quintana, H. A., Muniz de Farias, M., & Reyes Lizcano, F. A. (2018). Use of Blast Furnace Slag and Steel in Asphalt Mixtures: Review. Revista Ingenierías Universidad De Medellín, 17(33), 71-97. https://doi.org/10.22395/rium.v17n33a4

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in