State of the Art: Desalination Using Membrane Technologies as an Alternative for the Problem of Fresh Water Shortage

Maria Camila Grueso-Dominguez | Bio
Universidad de Antioquia
Camilo Cesar Castro-Jiménez | Bio
Universidad de Antioquia
Mauricio Andres Correa-Ochoa | Bio
Universidad de Antioquia
Julio Cesar Saldarriaga-Molina | Bio
Universidad de Antioquia

Abstract

Considering the scarce availability of fresh water, the accelerated growth of population and the contamination of water resources, it is necessary to look for alternatives to take advantage of the brackish resources and water from the oceans. Numerous investigations in the field of desalination processes –emphasizing in the separation by membranes–, have allowed the potabilization of sea water in economically viable conditions and without major problems. The objective of this article is to compile the main advances worldwide regarding desalination processes. As a result of the analysis of the scientific evidence found, some future challenges are highlighted, which include: use of renewable energy sources in the processes, reduction in the use of chemical products; use of innovative materials for membranes, the search for more effective and profitable pretreatment solutions, and reduction of the total cost of water for the consumer.

References

  1. [1] G. E. Dévora-Isiordia, R. González-Enríquez y S. Ruiz-Cruz, “Evaluación de procesos de desalinización y su desarrollo en México,” Tecnol. y ciencias del agua, vol. 4, n.º 3, pp. 27-46, 2013.

  2. [2] K. Wong y C. Pecora, “Recommendations for Energy–Water–Food Nexus Problems,” J. Energy Resour. Technol., vol. 137, n.º 3, pp. 1-5, 2015. DOI: https://doi.org/10.1115/1.4028139

  3. [3] M. M. Morad, H. A. M. El-maghawry y K. I. Wasfy, “A developed solar-powered desalination system for enhancing fresh water productivity,” Sol. Energy, vol. 146, pp. 20-29, 2017. DOI: https://doi.org/10.1016/j.solener.2017.02.002

  4. [4] M. Frankel, Facilities Site Piping Systems Handbook. New York: McGraw-Hill Education, 2012.

  5. [5] A. Alkaisi, R. Mossad y A. Sharifian-barforoush, “A review of the water desalination systems integrated with renewable energy,” Energy Procedia, vol. 110, pp. 268-274, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.03.138

  6. [6] AWWA, Water Treatment Plant Design, 5º ed., New York: The McGraw-Hill Companies, 2012.

  7. [7] D. Mackenzie, Water and Wastewater Engineering: Design Principles and Practice. New York: McGraw-Hill Education, 2010.

  8. [8] L. Weinrich, M. LeChevallier y C. N. Haas, “Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment,” Water Res., vol. 101, pp. 203-213, 2016. DOI: https://doi.org/10.1016/j.watres.2016.05.075

  9. [9] M. Ben-Sasson, X. Lu, S. Nejati, H. Jaramillo y M. Elimelech, “In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles,” Desalination, vol. 388, pp. 1-8, 2016. DOI: https://doi.org/10.1016/j.desal.2016.03.005

  10. [10] M. Wakil, M. Burhan, L. Ang, y K. Choon, “Energy-water-environment nexus underpinning future desalination sustainability,” Desalination, vol. 413, pp. 52-64, 2017. DOI: https://doi.org/10.1016/j.desal.2017.03.009

  11. [11] M. Chandrashekara y A. Yadav, “Water desalination system using solar heat : A review,” Renew. Sustain. Energy Rev., vol. 67, pp. 1308-1330, 2017. DOI: https://doi.org/10.1016/j.rser.2016.08.058

  12. [12] D. M. Sandoval Corro, “Procedimientos para el control químico del sistema de tratamiento de la Central Nucleoeléctrica Laguna Verde por ósmosis inversa,” Proyecto final de pregrado, Universidad Veracruzana, Veracruz, México, 2014.

  13. [13] F. Muñoz y L. A. Becerril, “Low-capacity Reverse Osmosis Solar Desalination Plant,” Energy Procedia, vol. 57, pp. 2787-2793, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.10.311

  14. [14] A. L. Rocha Neves, M. Pereira Alves, C. Feitosa de Lacerda y H. Raj Gheyi, “Aspectos socioambientais e qualidade da água de dessalinizadores nas comunidades rurais de Pentecoste-CE,” Rev. Ambient. e Agua, vol. 12, n.º 1, pp. 124-135, 2017. DOI: https://doi.org/10.4136/ambi-agua.1722

  15. [15] V. B. Brião et al., “Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil,” Desalination, vol. 344, pp. 402-411, 2014. DOI: https://doi.org/10.1016/j.desal.2014.04.008

  16. [16] T. D. J. R. López, D. Lafargue Verdecia, O. González Diaz y E. Medina Correa, “Uso de ósmosis inversa en el hotel Breezes Jibacoa para la desalación de agua de consumo,” Ing. Hidráulica y Ambient., vol. XXXVI, n.º 3, pp. 112-125, 2015.

  17. [17] “RWL Water awarded SWRO desalination contract in Argentina,” Pump Industry Analyst, vol. 51, p. 4, 2014. DOI: https://doi.org/10.1016/S1359-6128(14)70432-X

  18. [18] L. Greenlee, D. Lawler, B. Freeman, B. Marrot y P. Moulin, “Reverse osmosis desalination: Water sources, technology, and today’s challenges,” Water Res., vol. 43, pp. 2317-2348, 2009. DOI: https://doi.org/10.1016/j.watres.2009.03.010

  19. [19] M. Molinos y D. González, “Evaluation of the economics of desalination by integrating greenhouse gas emission costs: An empiric application for Chile,” Renew. Energy, vol. 133, pp. 1327-1337, 2019. DOI: https://doi.org/10.1016/j.renene.2018.09.019

  20. [20] Y. Suescun, D. Álvarez, F. Martínez y E. Jiménez, “Propuesta para el aseguramiento de la prestación del servicio de acueducto en el municipio de Manaure, departamento de la Guajira,” Proyecto final de especialización, Univ. Católica Colomb., Bogotá, Colombia, 2018.

  21. [21] C. Alarcón, L. Amaya y O. Díaz, “Análisis comparativo entre acuíferos costeros y plantas desalinizadoras como fuente de suministro para poblaciones con escasez de fuentes hídricas superficiales,” Proyecto final de especialización, Univ. Católica Colomb., Bogotá, Colombia, 2015.

  22. [22] M. E. Coronado, “Diseño e implementación de una planta prototipo automatizada para la potabilización de aguas por el método de osmosis inversa en Ingeaguas S.A.,” Proyecto final de pregrado, Universidad de Antioquia, Medellín, Colombia, 2013.

  23. [23] H. March, M. Hernández y D. Saurí, “Percepción de recursos convencionales y no convencionales en áreas sujetas a estrés hídrico: El caso de Alicante,” Rev. Geogr. Norte Gd., vol. 60, pp. 153-172, 2015.

  24. [24] A. Alberti Marti, “Estudio de la viabilidad técnica y económica de la desalinización de agua de mar mediante unidades autónomas de ósmosis inversa,” Proyecto final de pregrado, Universitat Politecnica De Catalunya, Barcelona, España, 2015.

  25. [25] D. Á. Prats, R. A. García y J. V. Alonso, “Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras,” Ing. Mecánica, vol. 14, n.º 1, pp. 22-30, 2011.

  26. [26] F. Diogo, A. Santos y M. Azevedo, “Renewable Energy Powered Desalination Systems: Technologies and Market Analysis,” Tesis de maestría, Universidad de Lisboa, Lisboa, Portugal, 2014.

  27. [27] P. Compain, “Solar energy for water desalination,” Procedia Eng., vol. 46, n.º 0, pp. 220-227, 2012.

  28. [28] G. Nebbia y G. Nebbia Menozzi, “Early experiments on water desalination by freezing,” Desalination, vol. 5, pp. 49-54, 1968. DOI: https://doi.org/10.1016/S0011-9164(00)80191-5

  29. [29] S. woo Han, W. Kim, Y. Lee, B. M. Jun, and Y. N. Kwon, “Investigation of Hydrate-induced Ice Desalination (HIID) and its application to a pretreatment of reverse osmosis (RO) process,” Desalination, vol. 395, pp. 8-16, 2016. DOI: https://doi.org/10.1016/j.desal.2016.05.023

  30. [30] A. Alsheghri, S. A. Sharief, S. Rabbani y N. Z. Aitzhan, “Design and Cost Analysis of a Solar Photovoltaic Powered Reverse Osmosis Plant for Masdar Institute,” Energy Procedia, vol. 75, pp. 319-324, 2015. DOI: https://doi.org/10.1016/j.egypro.2015.07.365

  31. [31] N. Kishizawa, K. Tsuzuki y M. Hayatsu, “Low pressure multi-stage RO system developed in ‘ Mega-ton Water System’ for large-scaled SWRO plant,” Desalination, vol. 368, pp. 81-88, 2015.DOI: https://doi.org/10.1016/j.desal.2015.01.045

  32. [32] E. A. Abdel-Aal, M. E. Farid, F. S. M. Hassan y A. E. Mohamed, “Desalination of Red Sea water using both electrodialysis and reverse osmosis as complementary methods,” Egypt. J. Pet., vol. 24, pp. 71-75, 2015. DOI: https://doi.org/10.1016/j.ejpe.2015.02.007

  33. [33] H. M. Ali, H. Gadallah, S. S. Ali, R. Sabry y A. G. Gadallah, “Pilot-Scale Investigation of Forward / Reverse Osmosis Hybrid System for Seawater Desalination Using Impaired Water from Steel Industry,” International Journal of Chemical Engineering, 2016. DOI: https://doi.org/10.1155/2016/8745943

  34. [34] D. M. Van Tonder, C. Fourie y J. Maree, “Development of a solar desalination plant,” South African J. Geol., vol. 119, n.º 1, pp. 39-46, 2016. DOI: https://doi.org/10.2113/gssajg.119.1.39

  35. [35] H. Boulahfa, B. Sakina, F. Elhannouni, T. Mohamed y E. Azzedine, “Demineralization of brackish surface water by reverse osmosis: The first experience in Morocco,” J. Environ. Chem. Eng., vol. 7, n.º 2, 2019. DOI: https://doi.org/10.1016/j.jece.2019.102937

  36. [36] R. Prakash et al., “Energy considerations associated with increased adoption of seawater desalination in the United States,” Desalination, vol. 445, pp. 213-224, 2018. DOI: https://doi.org/10.1016/j.desal.2018.08.014

  37. [37] M. Sarai Atab, A. J. Smallbone y A. P. Roskilly, “An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation,” Desalination, vol. 397, pp. 174-184, 2016. DOI: https://doi.org/10.1016/j.desal.2016.06.020

  38. [38] F. S. Pinto y R. C. Marques, “Desalination projects economic feasibility : A standardization of cost determinants,” Renew. Sustain. Energy Rev., vol. 78, pp. 904-915, 2017. DOI: https://doi.org/10.1016/j.rser.2017.05.024

  39. [39] E. Lapuente, “Full cost in desalination . A case study of the Segura River Basin,” DES, vol. 300, pp. 40-45, 2012. DOI: https://doi.org/10.1016/j.desal.2012.06.002

  40. [40] R. Semiat, “Desalination: present and future,” Int. Water Resour. Assoc. Water Int, vol. 25, pp. 54-65, 2000.

  41. [41] K. V Reddy y N. Ghaffour, “Overview of the cost of desalinated water and costing methodologies,” Desalination, vol. 205, n.º 1-3, pp. 340-353, 2007. DOI: https://doi.org/10.1016/j.desal.2006.03.558

  42. [42] T. M. Missimer, N. Ghaffour, A. H. A. Dehwah, R. Rachman, R. G. Maliva y G. Amy, “Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics,” Desalination, vol. 322, pp. 37-51, 2013. DOI: https://doi.org/10.1016/j.desal.2013.04.021

  43. [43] R. Duncan C., Plant Equipment and Maintenance Engineering Handbook. New York: McGraw-Hill Education, 2014.

  44. [44] M. A. Alghoul et al., “Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system,” Renew. Energy, vol. 93, pp. 101-114, 2016. DOI: https://doi.org/10.1016/j.renene.2016.02.015

  45. [45] T. Suzuki et al., “Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties,” Water Res., vol. 100, pp. 326-336, 2016. DOI: https://doi.org/10.1016/j.watres.2016.04.068

  46. [46] L. Henthorne y B. Boysen, “State-of-the-art of reverse osmosis desalination pretreatment,” Desalination, vol. 356, pp. 129-139, 2015. DOI: https://doi.org/10.1016/j.desal.2014.10.039

  47. [47] M. Raulio, R. Juvonen, H. L. Alakomi, J. Ekman, M. Hesampour y T. Lundin, “Characterisation of (bio)fouling on used reverse osmosis membranes,” Procedia Eng., vol. 44, pp. 931-933, 2012. DOI: https://doi.org/10.1016/j.proeng.2012.08.626

  48. [48] J. N. Hakizimana et al., “Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis,” Desalination, vol. 393, pp. 90-101, 2016. DOI: https://doi.org/10.1016/j.desal.2015.12.025

  49. [49] V. García Molina et al., “Estudio de viabilidad y mejora de esquemas integrados de ultrafiltración y ósmosis inversa para la producción de agua potable a partir de agua superficial,” Tecnoaqua, vol. 8, pp. 42-46, 2014.

  50. [50] M. Monnot, H. T. K. Nguyên, S. Laborie y C. Cabassud, “Seawater reverse osmosis desalination plant at community-scale: Role of an innovative pretreatment on process performances and intensification,” Chem. Eng. Process., vol. 113, pp. 42-55, 2017. DOI: https://doi.org/10.1016/j.cep.2016.09.020

  51. [51] T. Zhou, Z. Wang y W. Li, “A cost model approach for RO water treatment of power plant,” Procedia Environ. Sci., vol. 11, pp. 581-588, 2011. DOI: https://doi.org/10.1016/j.proenv.2011.12.091

  52. [52] M. U. Siddiqui, A. F. M. Arif y S. Bashmal, “Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: Effect of pore size and shape distribution and membrane stretching,” Membranes (Basel)., vol. 6, pp. 1-14, 2016. DOI: https://doi.org/10.3390/membranes6030040

  53. [53] S. Manju y N. Sagar, “Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India,” Renew. Sustain. Energy Rev., vol. 73, pp. 594-609, 2017. DOI: https://doi.org/10.1016/j.rser.2017.01.164

  54. [54] S. G. Kim, J. H. Chun, B. H. Chun y S. H. Kim, “Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination,” Desalination, vol. 325, pp. 76-83, 2013. DOI: https://doi.org/10.1016/j.desal.2013.06.017

  55. [55] N. L. Le y S. P. Nunes, “Materials and membrane technologies for water and energy sustainability,” Sustain. Mater. Technol., vol. 7, pp. 1-28, 2016. DOI: https://doi.org/10.1016/j.susmat.2016.02.001

  56. [56] N. C. Martins, “Estudo de Limpeza Quimica em Membranas de Osmose Inversa,” Proyecto final de pregrado, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brasil, 2012.

  57. [57] C. B. Bonilla Suárez, “Desmineralización de agua de mar mediante membranas cerámicas modificadas,” Universidad Autónoma de Querétaro, 2011.

  58. [58] V. C. J. Mansouri, S. Harrisson, “Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities,” J. Mater. Chem., vol. 20, 2010. DOI: https://doi.org/10.1039/B926440J

  59. [59] S. Jiang, Y. Li y B. P. Ladewig, “A review of reverse osmosis membrane fouling and control strategies,” Sci. Total Environ., vol. 595, pp. 567-583, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.235

  60. [60] S. Lee, O. M., Kim, H. Y. Park, W. Kim y T. H. Yu, “A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process,” J. Hazard. Mater., vol. 295, 2015. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.016

  61. [61] M. Alizadeh Tabatabai, S. A. Schippers y J. C. Kennedy, “Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis.,” Water Res., vol. 59, pp. 283-294, 2014. DOI: https://doi.org/10.1016/j.watres.2014.04.001

How to Cite
Grueso-Dominguez, M. C., Castro-Jiménez, C. C., Correa-Ochoa, M. A., & Saldarriaga-Molina, J. C. (2019). State of the Art: Desalination Using Membrane Technologies as an Alternative for the Problem of Fresh Water Shortage. Revista Ingenierías Universidad De Medellín, 18(35), 69-89. https://doi.org/10.22395/rium.v18n35a5

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in