Change in Geotechnical Properties of a Soil Subject to Laboratory Ignition

Yamile Valencia-González | Bio
Facultad de Minas, Universidad Nacional de Colombia
Juliana Patiño Restrepo
Facultad de Minas, Universidad Nacional de Colombia
Maria Camila Álvarez Guerra
Facultad de Minas, Universidad Nacional de Colombia
Daniel Ortega Ramírez
Facultad de Minas, Universidad Nacional de Colombia
Oscar Echeverri-Ramírez
Facultad de Minas, Universidad Nacional de Colombia

Abstract

Tropical areas are regions subject to warm environments and their soils, especially in areas covered with vegetation, may be exposed to events such as fires. The high temperatures that can be reached in these events cause variations in some of the geotechnical properties of soils, influencing the behavior of the material, and can give rise to erosive processes, which in many cases precede mass movements. The following article describes what happens in a soil that has undergone an ignition process in the laboratory, analyzing the variations in some physical (moisture content, Atterberg limits, specific gravity and granulometry), chemical (pH and cation exchange capacity), mineralogical, structural and mechanical (suction, disintegration and pinhole test) properties; clearly showing that the material becomes more acidic with a higher void ratio, less cation exchange capacity, less kaolinite, plasticity and suction, and variation in texture, with a consequent increase in erodibility.

References

[1] H. Wright y B. A., Fire Ecology in the United State and southern Canada, John Wiley and Sons, New York, 1982.

[2] J. M. Solera, Alteraciones físicas, químicas y biológicas en suelos afectados por incendios forestales. Contribución a su conservación y regeneración. Tesis de Doctorado, Universidad de Alicante, 321 pp. 1999.

[3] M. Redin, G. d. F. dos Santos, P. Miguel, G. Denega, M. Lupatini, A. Doneda y E. Lorensi de Souza, impactos da queima sobre atributos químicos, físicos e biológicos do solo, Revista Ciencia Forestal, v. 21. n.° 2. 2001.

[4] R. V. Soares, Queimas controladas: prós e contras, Piracicaba: IPEF: In: Fórum nacional sobre incêndios florestais; reunião conjunta, 1995, pp. 6-10.

[5] F. Díaz-Fierros, F. G. Soltres, A. Cabaneiro, T.Carballas y M. C. L. P. &. M. V. Celoiro, Efectos erosivos de los incendios forestales en los suelos de Galicia, An. Edafol. Agrobiol, 41: 627-639. 1982.

[6] R. C. Graham y A. L. Ulery, Forest fire effects on soil color and texture, Soil Sci. Soc. Am. J. 57: 135-140. 1993.

[7] J. González, G. Gimeno y M. C. Fernández, Efecto de los incendios forestales sobre el suelo, Suelo y Planta, pp. 72-79. 1992.

[8] K. Mertens, A. R. Tolossa1, V. A., M. Dumon, J. Deckers y E. van Ranst, “Impact of traditional soil burning (guie) on Planosol properties and land-use intensification in south-western Ethiopia”, British Society of Soil Science, Soil Use and Management, vol. 31, pp. 330-336, 2015.

[9] E. A. Cassol, D. Martins, D. F. Eltz y R. Falleiro, Erosividade das chuvas em Taquari, RS, determinada pelo índice EI30, no período de 1963 a 1999, Santa Maria: In: Reunião Brasileira de Manejo e Conservação de Solo e Água, pp. 15, 2004.

[10] D. C. Moore y M. J. Singer, Crust formation effects on soil erosion processes, Soil Sci. Soc. Am. J., 1990.

[11] S. D. Ela, S. C. Gupta y W. J. Rawis, Macropore And Surface Seal Interactions Affecting Water Infiltration Into Soil, Soil Sci. Soc. Am. J. 56. 714-721, 1992.

[12] V. Andreu, J. L. Rubio, J. Forteza y R. Cerní, Long Term Effects Of Forest Fires On Soil Erosion And Nutrient Losses. Soil Erosion As A Consequence Of Forest Fires. M. Sala y J. L. Rubio, Logroño: Geoforma Ediciones 79-90, 1994.

[13] K. Cano, Reforzamiento de suelos con fibras artificiales, Trabajo de grado ingeniera civil de la Universidad Nacional de Colombia sede Medellín, 2013.

[14] Cimientos Ltda., Estudio de Suelos Cafetería Facultad de Minas, Medellín: 2012.

[15] D. Neary, K. C. Ryan y L. F. DeBano, “Wildland fire in ecosystems: effects of fire on soils and water”, vol. vol. 4. , n.º Gen. Tech. Rep. RMRS-GTR-42- Ogden, UT: U. S. Department of Agriculture, Forest Service, Rocky Mountain, 2005 (revised 2008).

[16] ASTM International, ASTM D 2216. Standard Test Methods For Laboratory Determination Of Water (Moisture) Content Of Soil And Rock By Mass, West Conshohocken, PA, 2005.

[17] ASTM International, ASTM D 854. Standard test methods for specific gravity of soild solids by water pycnometer, West Conshohocken, PA, 2010.

[18] ASTM International, ASTM D 4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, West Conshohocken, PA, 2013.

[19] ASTM International, ASTM D 422-63 Standard Test Method for Particle-Size Analysis of Soils, West Conshohocken, PA, 2007.

[20] ASTM International, ASTM C 117-13. Standard Test Method for Materials Finer than 75-μm (N.° 200) Sieve in Mineral Aggregates by Washing, West Conshohocken, PA, 2013.

[21] J. Nogami y D. Villibor, Pavimentacao de baixo custo com solos lateríticos., Sao Paulo, Brasil: Ed. Vilibor, pp. 213, 1995.

[22] ASTM International, ASTM D4972-13. Standard Test Method for pH of Soils, West Conshohocken, PA, 2013.

[23] M. Lima, “Degradação físico-química e mineralógica de maciços junto às voçorocas”. Tese de Doutorado, Brasília, DF: Universidade de Brasília, Faculdade de Tecnologia, Departamento de engenharia civil e ambiental. 2003.

[24] J. &. B. G. M. I. García Galvis, “Evaluación de parámetros de calidad para la determinación de carbono orgánico en suelos”, Revista Colombiana de Química, pp. 201-209, 2005.

[25] ASTM Committee D-18, Special Procedures for Testing Soil and Rock for Engineering Purposes: Fifth Edition, 1970.

[26] Y. Valencia González, Biomineralización aplicada a la mitigación de procesos erosivos superficiales en un suelo tropical de la ciudad de Medellín. Tesis Maestría en Ingeniería-Geotecnia, Medellín: Universidad Nacional de Colombia, Sede Medellín, 2011.

[27] Embrapa, Manual de métodos de análise de solo, Rio de Janeiro: Embrapa Solos, 1997.

[28] ASTM International, ASTM D4647/D4647M-13, Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test,, West Conshohocken, PA, 2013.

[29] ASTM International, ASTM D-5298-10. Standard test method for measurement of soil potential (Suction) using filter paper, West Conshohocken, PA., 2010.

[30] ABNT. NBR 14114. Solo – Solos argilosos dispersivos. Identificação e Classificação por meio do ensaio do furo de agulha (Pinhole Test), Rio de Janeiro, 1998.

[31] J. Camapum de Carvalho, M. Martines Sales, N. Moreira de Souza y M. T. Da silva Melo, Processos Erosivos No Centro-Oeste Brasileiro, FINATEC, pp. 464, 2006.

[32] D. A. Sáenz Meneses, Efecto de un incendio forestal sobre grupos funcionales bacterianos edáficos en una plantación de Eucaliptus cinerea (Suesca-Cundinamarca), Bogotá: Trabajo de Grado para optar por el título de microbiólogo industrial, Pontifica Universidad Javeriana, 2006.

[33] C. F. Dorronsoro, “Introducción a la edafología lección 5. Propiedades fisicoquímicas”, [En línea]. Available: http://www.edafologia.net/introeda/tema05/ccc.htm. [Último acceso: 2016].

[34] C. C. Sánchez, “Mullita y su identificación en materiales cerámicos”, Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 5, n.º 1, p. 92, 1966.

[35] E. G. Rochow, Química inorgánica descriptiva, España: Editorial Reverté S. A., 1981.

[36] E. Besoain., Mineralogía de arcillas de suelos: n.° 60, San José, Costa Rica: IICA serie de libros y material educativos, 1985.

[37] C. Wieting, B. A. Ebel y K. Singha, “Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory”, Journal of Hydrology: Regional Studies, vol. 13, pp. 43-57, 2017.

[38] Soil Survey Division Staff. Soil Conservation Service. U. S. Department of Agriculture, Soil survey manual selected chemical properties Handbook 18, 1993.

[39] Ceddia, M. B., L. H. Cunha Dos Angos, E. Lima, R. A. y L. A. Da Silva, Sistemas de colheita da cana-de-açúcar e alterações nas propriedades físicas de um solo Podzólico Amarelo no Estado do Espírito Santo, Brasília: Pesquisa Agropecuária Brasileira, v. 34, n.° 8, pp. 1467- 1473, ago. 1999.

[40] D. S. Rheinheimer, Modificações nos atributos químicos de solo sob campo nativo submetido à queima, Santa Maria: Ciência Rural, v. 33, n.° 1, pp. 49-55, jan./fev. 2003.

[41] ASTM International, ASTM D-3080. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Condition, West Conshohocken, 2004.
How to Cite
Valencia-González, Y., Patiño Restrepo, J., Álvarez Guerra, M. C., Ortega Ramírez, D., & Echeverri-Ramírez, O. (2018). Change in Geotechnical Properties of a Soil Subject to Laboratory Ignition. Revista Ingenierías Universidad De Medellín, 17(32), 85-107. https://doi.org/10.22395/rium.v17n32a5

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in