Selección de discriminadores de tráfico de red para clasificación en tiempo real

Angela María Vargas Arcila | Biografía
Universidad del Cauca
Juan Carlos Corrales Muñoz | Biografía
Universidad del Cauca
Alvaro Rendon Gallon | Biografía
Universidad del Cauca
Araceli Sanchis | Biografía
Universidad Carlos III de Madrid

Resumen

Existen varias técnicas para seleccionar un conjunto de variables para clasificación del tráfico de red. Sin embargo, muchos estudios ignoran el ámbito del conocimiento en donde el análisis y clasificación del tráfico tiene lugar y no consideran la información, siempre en movimiento, que se transporta en dichas redes. Este artículo describe el proceso de selección de discriminadores tráfico de redes en línea. Se obtuvieron 24 características que pueden procesarse en tiempo real y se proponen como los conjuntos de atributos base para futuros análisis, procesamiento y calificación conscientes del dominio (domain-aware). Para la selección de un conjunto de discriminadores de tráfico y con el fin de evitar los inconvenientes mencionados anteriormente, se llevaron a cabo tres etapas. La primera consiste en la selección manual basada en el conocimiento contextual de las características de tráfico de red que tengan las condiciones de obtener en tiempo real a partir del flujo. La segunda etapa se enfoca en la calidad del análisis de los atributos previamente seleccionados para asegurar la relevancia de cada uno a la hora de efectuar la clasificación del tráfico. En la tercera etapa, la implementación de varios algoritmos de aprendizaje incremental verifican la idoneidad de tales atributos en procesos de clasificación de tráfico en línea.

Referencias

  1. T. Bakhshi and B. Ghita, “On Internet Traffic Classification: A Two-Phased Machine Learning Approach,” J. Comput. Netw. Commun., vol. 2016, pp. 21, 2016.
  2. N. Namdev, S. Agrawal, and S. Silkari, “Recent Advancement in Machine Learning Based Internet Traffic Classification,” Procedia Comput. Sci., vol. 60, pp. 784-791, Jan. 2015.
  3. T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine learning,” IEEE Commun. Surv. Tutor., vol. 10, 4, pp. 56-76, 2008.
  4. A. Baer et al., “DBStream: A holistic approach to large-scale network traffic monitoring and analysis,” Comput. Netw., vol. 107, pp. 5-19, Oct. 2016.
  5. A. Moore, M. Crogan, and D. Zuev, “Discriminators for use in flow-based classification (Technical report No. RR-05-13),” University of London, Department of Computer Science, Queen Mary, 2005.
  6. H. R. Loo and M. N. Marsono, “Online network traffic classification with incremental learning,” Evol. Syst., vol. 7, 2, pp. 129-143, Jun. 2016.
  7. F. Ertam and E. Avcı, “A new approach for internet traffic classification: GA-WK-ELM,” Measurement, vol. 95, pp. 135-142, Jan. 2017.
  8. S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mellia, “Reviewing Traffic Classification,” in Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 123-147.
  9. A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt, “Architecture of a Network Monitor,” in Passive & Active Measurement Workshop 2003 (PAM2003), 2003.
  10. D. Lei, Y. Xiaochun, and X. Jun, “Optimizing Traffic Classification Using Hybrid Feature Selection,” in 2008 The Ninth International Conference on Web-Age Information Management, Zhangjiajie Hunan, China, 2008, pp. 520-525.
  11. D. Lei, C. You, and Y. Xiaochun, “Optimizing IP Flow Classification Using Feature Selection,”in Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2007), Adelaide, SA, Australia, 2007, pp. 39-45.
  12. H. Zhang, G. Lu, M. T. Qassrawi, Y. Zhang, and X. Yu, “Feature selection for optimizing traffic classification,” Comput. Commun., vol. 35, 12, pp. 1457-1471, Jul. 2012.
  13. D. Zuev and A. W. Moore, “Traffic Classification Using a Statistical Approach,” in Passive and Active Network Measurement, 2005, pp. 321-324.
  14. A. W. Moore and D. Zuev, “Internet Traffic Classification Using Bayesian Analysis Techniques,” in Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, New York, NY, USA, 2005, pp. 50–60.
  15. G. P. S. Junior, J. E. B. Maia, R. Holanda, and J. N. de Sousa, “P2P Traffic Identification using Cluster Analysis,” in 2007 First International Global Information Infrastructure Symposium, 2007, pp. 128–133.
  16. T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet Traffic Classification,” IEEE Trans. Neural Netw., vol. 18, 1, pp. 223-239, Jan. 2007.
  17. N. Jing, M. Yang, S. Cheng, Q. Dong, and H. Xiong, “An efficient SVM-based method for multi-class network traffic classification,” in 30th IEEE International Performance Computing and Communications Conference, Orlando, FL, 2011, pp. 1-8.
  18. R. Holanda Filho, M. F. Fontenelle do Carmo, J. E. B. Maia, and G. Paulino Siqueira, “An Internet traffic classification methodology based on statistical discriminators,” in NOMS 2008 - 2008 IEEE Network Operations and Management Symposium, Salvador, Bahia, Brazil, 2008, pp. 907-910.
  19. Y. Liu, H. Liu, H. Zhang, and X. Luan, “The Internet Traffic Classification an Online SVM Approach,” in 2008 International Conference on Information Networking, Busan, South Korea, 2008, pp. 1-5.
  20. F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad, “An incremental intrusion detection system using a new semi-supervised stream classification method,” Int. J. Commun. Syst., vol. 30, 4, p. e3002, Mar. 2017.
  21. G. Sun, T. Chen, Y. Su, and C. Li, “Internet Traffic Classification Based on Incremental Support Vector Machines,” Mob. Netw. Appl., vol. 23, 4, pp. 789-796, Aug. 2018.
  22. G. Baptista and T. Oliveira, “Gamification and serious games: A literature meta-analysis and integrative model,” Computers in Human Behavior, vol. 92, pp. 306–315, Mar. 2019, doi: 10.1016/j.chb.2018.11.030.
  23. J. Hamari and L. Keronen, “Why do people play games? A meta-analysis,” International Journal of Information Management, vol. 37, 3, pp. 125–141, Jun. 2017, doi: 10.1016/j.ijinfomgt.2017.01.006.[24] H. A. Jamil, A. Mohammed, A. Hamza, S. M. Nor, and M. N. Marsono, “Selection of On-line Features for Peer-to-Peer Network Traffic Classification,” in Recent Advances in Intelligent Informatics, 2014, pp. 379-390.
  24. D. C. Corrales, A. Ledezma, and J. C. Corrales, “A Conceptual Framework for Data Quality in Knowledge Discovery Tasks (FDQ-KDT): A Proposal,” J. Comput., vol. 10, 6, pp. 396-405, Nov. 2015.
  25. M. Bramer, Principles of Data Mining. Springer, 2016.
  26. M. Juhola and J. Laurikkala, “Missing values: how many can they be to preserve classification reliability?,” Artif. Intell. Rev., vol. 40, 3, pp. 231-245, Oct. 2013.
  27. A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, Learning from Imbalanced Data Sets. Springer, 2018.
  28. M. M. Patil, “Handling Concept Drift in Data Streams by Using Drift Detection Methods,” in Data Management, Analytics and Innovation, Singapore, 2019, pp. 155-166.
  29. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive Online Analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601–1604, 2010.
  30. L. Rutkowski, M. Jaworski, and P. Duda, Stream Data Mining: Algorithms and Their Probabilistic Properties. Springer, 2019.
Cómo citar
Vargas Arcila, A. M., Corrales Muñoz, J. C., Rendon Gallon, A., & Sanchis, A. (2021). Selección de discriminadores de tráfico de red para clasificación en tiempo real. Revista Ingenierías Universidad De Medellín, 20(38), 65-85. https://doi.org/10.22395/rium.v20n38a4

Descargas

La descarga de datos todavía no está disponible.

Send mail to Author


Send Cancel

Estamos indexados en