Uso de la energía geotérmica en la industria alimenticia: una reseña

Lina Patricia Vega | Biografía
Universidad Santo Tomás - Tunja
Jeimy Alejandra Parra Ramos | Biografía
Universidad Santo Tomás - Tunja
Maria Paz García Sarmiento | Biografía
Universidad Santo Tomás - Tunja
Maria Alejandra Ruiz Gaitán | Biografía
Universidad Santo Tomás - Tunja
Liz Anyury Pedraos Juya | Biografía
Universidad Santo Tomás - Tunja

Resumen

Este artículo tuvo como objetivo realizar una revisión bibliográfica sobre el estado actual de la energía geotérmica en la industria alimenticia, la cual usa una tercera parte de la energía mundial para la producción en todos sus procesos involucrados. Los combustibles fósiles son una de las fuentes comunes para la generación de energía eléctrica para la industria alimenticia. Sin embargo, es bien sabido que éstas causan efectos adversos ambientalmente tales como polución atmosférica, perturbación de ecosistemas y agotamiento de recursos naturales. Debido a la falta de estudios publicados sobre este tema, esta reseña fue llevada a cabo usando distintas bases de datos. De los 77 documentos publicados entre 2010 y 2020, más del 70 % de ellos fueron escritos en inglés por investigadores de 67 instituciones alrededor del mundo. Estos documentos permiten analizar una muestra de países en los que la implementación de la energía geotérmica tiene un gran avance en procesos que implementan la energía geotérmica en la industria alimenticia, tales como calentar y mantener sistemas de refrigeración para el secado de frutas y vegetales y la producción de varios alimentos, alcanzando una cobertura energética cercana al 10 % de esta industria.

Referencias

  1. S. Tyagi, N. Garg, and R. Paudel, “Environmental Degradation: Causes and Consequences,” Eur. Res., vol. 81, no. 8–2, p. 1491, 2014, doi: 10.13187/er.2014.81.1491.
  2. S. Z. Kovács, P. Póla, V. Varjú, D. Topić, and B. H. Kovács, “Local development based on renewable energies and energy efficiency in rural areas,” 16th Nat. Gas, Heat Water Conf. 9th Int. Nat. Gas, Heat Water Conf., no. September 2018, pp. 101–111, 2018, [Online]. Available: http://www.regscience.hu:8080/xmlui/bitstream/handle/11155/1796/local.pdf?sequence=1.
  3. B. Mundial, “Energía geotérmica,” 2017. https://www.bancomundial.org/es/results/2017/12/01/geothermal (accessed Feb. 09, 2021).
  4. R. E. Pineda Arrieta, G. E. Valencia Ochoa, and J. R. Mckinley, “A bibliometric analysis of solar tracking systems research,” Prospectiva, vol. 16, no. 2, pp. 35–48, 2018, doi: 10.15665/rp.v16i2.841.
  5. D. Chandrasekharam, A. Lashin, N. Al Arifi, A. M. Al-Bassam, and C. Varun, “Geothermal energy for desalination to secure food security: Case study in Djibouti,” Energy. Sustain. Soc., vol. 9, no. 1, 2019, doi: 10.1186/s13705-019-0206-3.
  6. R. Law, A. Harvey, and D. Reay, “Opportunities for low-grade heat recovery in the UK food processing industry,” Appl. Therm. Eng., vol. 53, no. 2, pp. 188–196, May 2013, doi: 10.1016/j.applthermaleng.2012.03.024.
  7. K. Yadav and A. Sircar, “Application of low enthalpy geothermal fluid for space heating and cooling, honey processing and milk pasteurization,” Case Stud. Therm. Eng., vol. 14, no. February, p. 100499, 2019, doi: 10.1016/j.csite.2019.100499.
  8. M. Taniguchi, N. Masuhara, and K. Burnett, “Water, energy, and food security in the Asia Pacific region,” J. Hydrol. Reg. Stud., vol. 11, pp. 9–19, 2017, doi: 10.1016/j.ejrh.2015.11.005.
  9. S. A. Tassou, Y. Ge, A. Hadawey, and D. Marriott, “Energy consumption and conservation in food retailing,” Appl. Therm. Eng., vol. 31, no. 2–3, pp. 147–156, 2011, doi: 10.1016/j.applthermaleng.2010.08.023.
  10. A. Manzella, “Geothermal energy,” EPJ Web Conf., vol. 148, pp. 1–26, 2017, doi: 10.1051/epjconf/201714800012.
  11. 김태호, T.-H. Kim, and S.- Yee, “Evaluation of Applicability of Renewable Energy in Controlled Horticulture Farms-Centering on Economic Analysis of Geothermal․Solar Powered,” Korean Association of Organic Agriculture, 2012. Accessed: Feb. 10, 2021. [Online]. Available: https://www.koreascience.or.kr/article/JAKO201229665548390.page.
  12. N. Pelletier et al., “Energy intensity of agriculture and food systems,” Annu. Rev. Environ. Resour., vol. 36, pp. 233–246, 2011, doi: 10.1146/annurev-environ-081710-161014.
  13. G. C. D. C. J. P. ochen Bundschuh, “Geothermal, Wind and Solar Energy Applications in Agriculture and Aquaculture - Google Libros,” CRC Press, 2017. https://books.google.es/books?id=ajgPEAAAQBAJ&dq=«Geothermal,+wind+and+solar+energy+applications+in+agriculture+and+aquaculture,&hl=es&lr= (accessed Feb. 09, 2021).
  14. R. Ilgar, “Economic Contributions and Environmental Effects of Geothermal Energy: Çanakkale-Tuzla Geothermal Example,” Int. J. Res. Geogr., vol. 5, no. 1, pp. 1–8, 2019, doi: 10.20431/2454-8685.0501001.
  15. FONAM, “GUÍA DE BUENAS PRÁCTICAS DE AHORRO Y EFICIENCIA ENERGÉTICA SECTOR CURTIEMBRE,” pp. 1–18, 2004, [Online]. Available: http://energiayambienteandina.net/pdf/FONAM - GUÌA DE BP DE AHORRO Y EFICICENCIA ENERGÈTICA EN EL SECTOR CURTIEMBRE.pdf.
  16. C. Kinney, A. Dehghani-Sanij, S. B. Mahbaz, M. B. Dusseault, J. S. Nathwani, and R. A. Fraser, “Geothermal energy for sustainable food production in Canada’s remote northern communities,” Energies, vol. 12, no. 21, 2019, doi: 10.3390/en12214058.
  17. Janaina Camile Pasqual, Claudia Cecilia Lardizabal, Gricelda Herrera, Harry Alberto Bollmann, and Estela de Oliveira Nunes, “Water-Energy-Food Nexus: Comparative Scenarios and Public Policy Perspectives from Some Latin American Countries Regarding Biogas from Agriculture and Livestock,” J. Agric. Sci. Technol. A, vol. 5, no. 6, Jun. 2015, doi: 10.17265/2161-6256/2015.06.004.
  18. F. Van Der Meer et al., “GEOCAP : Geothermal Capacity Building Program (Indonesia-Netherlands),” World Geotherm. Congr. 2015, no. April, pp. 1–6, 2015, [Online]. Available: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/09009.pdf.
  19. D. Borge-Diez, A. Colmenar-Santos, C. Pérez-Molina, and Á. López-Rey, “Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities,” Energy, vol. 88, pp. 821–836, Aug. 2015, doi: 10.1016/j.energy.2015.07.005.
  20. I. Carmen and V. Adela, “Research on automation systems that use geothermal water energy when is applied to food industry machinery,” vol. XVII, pp. 149–158, 2018, [Online]. Available: http://protmed.uoradea.ro/facultate/publicatii/ecotox_zooteh_ind_alim/2018B/foodscience/07 Iancu Carmen.pdf.
  21. N. Gruda, M. Bisbis, and J. Tanny, “Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production – A review,” Journal of Cleaner Production, vol. 225. Elsevier Ltd, pp. 324–339, Jul. 10, 2019, doi: 10.1016/j.jclepro.2019.03.295.
  22. J. Patel, D. Shukla, A. Mudgal, V. Patel, and H. Raval, “Performance Evaluation of Latent Heat Thermal Storage Unit by integrating it with Flat Plate type Solar Air Heater,” in Journal of Physics: Conference Series, Aug. 2019, vol. 1276, no. 1, p. 12076, doi: 10.1088/1742-6596/1276/1/012076.
  23. B. Sanner, “Shallow geothermal energy – history, development, current status, and future prospects,” Proceedings, Eur. Geotherm. Congr. Strasbourg, Fr. 19-24 Sept 2016, pp. 1–19, 2016, [Online]. Available: http://sanner-online.de/media/c8848455cf28212fffff803cfffffff1.pdf.
  24. B. Tomaszewska and A. Szczepański, “Possibilities for the efficient utilisation of spent geothermal waters,” Environ. Sci. Pollut. Res., vol. 21, no. 19, pp. 11409–11417, Aug. 2014, doi: 10.1007/s11356-014-3076-4.
  25. A. Tugcu and O. Arslan, “Optimization of geothermal energy aided absorption refrigeration system—GAARS: A novel ANN-based approach,” Geothermics, vol. 65, pp. 210–221, Jan. 2017, doi: 10.1016/j.geothermics.2016.10.004.
  26. S. Cho, J. Kim, and E. Heo, “Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors,” Renewable and Sustainable Energy Reviews, vol. 49. Elsevier Ltd, pp. 1075–1083, Oct. 01, 2015, doi: 10.1016/j.rser.2015.04.105.
  27. L. RUŽIĈIĆ, L. KOSTADINOVIĆ, K. GLIGOREVIĆ, and M. OLJAĈA, “THE APPLICATION OF GEOTHERMAL ENERGY IN AGRICULTURE,” Chmk Nurs. Sci. J. Vol. 3 Nomor 2, Sept. 2019, vol. 59, n, no. september, pp. 91–104, 2013, [Online]. Available: http://89.188.43.75/agricultforest/20130629-09 Ruzicic et al.pdf.
  28. H. M. A. Jiménez, P. S. Pérez, O. V. Madrazo, E. P. González, and A. J. Rivera, “Low-enthalpy geothermal food dehydrator,” Trans. - Geotherm. Resour. Counc., vol. 40, pp. 163–168, 2016, [Online]. Available: http://pubs.geothermal-library.org/lib/grc/1032320.pdf.
  29. R. Bertani, “Deep Geothermal Energy for Heating and Cooling,” in Renewable Heating and Cooling: Technologies and Applications, Elsevier Inc., 2016, pp. 67–88.
  30. J. W. Lund, “Direct utilization of geothermal energy,” Energies, vol. 3, no. 8, pp. 1443–1471, 2010, doi: 10.3390/en3081443.
  31. N. Yildirim and S. Genc, “Energy and exergy analysis of a milk powder production system,” Energy Convers. Manag., vol. 149, pp. 698–705, Oct. 2017, doi: 10.1016/j.enconman.2017.01.064.
  32. J. W. Lund, D. H. Freeston, and T. L. Boyd, “Direct utilization of geothermal energy 2010 worldwide review,” Geothermics, vol. 40, no. 3, pp. 159–180, Sep. 2011, doi: 10.1016/j.geothermics.2011.07.004.
  33. V. Chandrasekhar and D. Chandrasekharam, “Energy Independence Through CDM Using Geothermal Resources: Indian Scenario,” undefined, 2010, Accessed: Feb. 09, 2021. [Online]. Available: https://www.semanticscholar.org/paper/Energy-Independence-Through-CDM-Using-Geothermal-Chandrasekhar-Chandrasekharam/13af649e53e6b51faff477c3f7491f0961b05219?p2df.
  34. P. F. A. Ogola, B. Davidsdottir, and I. B. Fridleifsson, “Potential contribution of geothermal energy to climate change adaptation: A case study of the arid and semi-arid eastern Baringo lowlands, Kenya,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6. Pergamon, pp. 4222–4246, Aug. 01, 2012, doi: 10.1016/j.rser.2012.01.081.
  35. I. M. A. Aljubury and H. D. a. Ridha, “Enhancement of evaporative cooling system in a greenhouse using geothermal energy,” Renew. Energy, vol. 111, pp. 321–331, Oct. 2017, doi: 10.1016/j.renene.2017.03.080.
  36. Á. Ragnarsson and M. Ágústsson, “Geothermal energy in horticulture,” Short Course VI Util. Low- Mediu. Geotherm. Resour. Financ. Asp. Util., pp. 1–7, 2014, [Online]. Available: http://www.os.is/gogn/unu-gtp-sc/UNU-GTP-SC-18-23.pdf.
  37. G. M. Butrico and D. H. Kaplan, “Greenhouse Agriculture in the Icelandic Food System,” Eur. Countrys., vol. 10, no. 4, pp. 711–724, 2018, doi: 10.2478/euco-2018-0039.
  38. R. Gruia, “Study on energy resources integration and sustainability of the new modular agriculture pattern,” Environ. Eng. Manag. J., vol. 10, no. 8, pp. 1213–1219, 2011, doi: 10.30638/eemj.2011.174.
  39. L. Riley, “INSIDE THE GREENHOUSE : Geothermal Energy and Spider Mite Production,” Environ. Sci., vol. 29, pp. 15–18, 2010, [Online]. Available: http://digitallib.oit.edu/digital/collection/geoheat/id/11454.
  40. W. Weidong, C. Xiaojiao, and Y. Wenyuan, “Thermodynamic Analysis of Organic Rankine-Single-Stage Vapor Compression Refrigeration System Powered by Medium-Temperature Geothermal Energy,” J. Univ. Shanghai Sci. Technol., 2015, Accessed: Feb. 09, 2021. [Online]. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-HDGY201502001.htm.
  41. R. Sikorska-bączek, “The use of geothermal energy in absorption refrigeration circuits,” Czas. Tech., vol. 2015, no. Środowisko Zeszyt 1-Ś (18) 2015, pp. 119–125, 2015, doi: 10.4467/2353737XCT.15.190.4395.
  42. J. Subić, L. Nastić, and B. Bekić, “Economic Effects of Using Geothermal Waters in the Production of Flowers and Vegetables in Glasshouses,” Procedia Econ. Financ., vol. 22, no. November 2014, pp. 131–140, 2015, doi: 10.1016/s2212-5671(15)00241-5.
  43. C. Iancu and M. Bădescu, “RENEWABLE ENERGY FOR DRYING GRAIN,” 4th Int. Conf. Therm. Equipment, Renew. Energy Rural Dev., vol. 180, 2015, [Online]. Available: https://www.researchgate.net/profile/Monica_Vasile/publication/278021508_Proceedings_TE-RE-RD_2015_CD-ROM/links/55792a6608ae752158704081.pdf#page=261.
  44. K. Dehina, A. M. Mokhtari, and B. Souyri, “Energy modelling of a new co-current coaxial earth – water to air- heat exchanger. Case study: Heating of house in Biskra - Algeria,” Geothermics, vol. 87, p. 101836, Sep. 2020, doi: 10.1016/j.geothermics.2020.101836.
  45. E. Nyambura, “Direct Use of Geothermal Energy : Menengai Direct Use Pilot Projects in Kenya,” no. November, pp. 1–6, 2016, [Online]. Available: http://theargeo.org/fullpapers/DIRECT USE OF GEOTHERMAL ENERGY- AN UPDATE OF THE MENENGAI DIRECT USE PILOT PROJECT IN KENYA.pdf.
  46. T. Abbas, A. Ahmed Bazmi, A. Waheed Bhutto, and G. Zahedi, “Greener energy: Issues and challenges for Pakistan-geothermal energy prospective,” Renewable and Sustainable Energy Reviews, vol. 31. Elsevier Ltd, pp. 258–269, Mar. 01, 2014, doi: 10.1016/j.rser.2013.11.043.
  47. M. H. Kuska, “Energy Modelling to Evaluate the Thermal Regulation of Aquaculture Raceways using Geothermal Heat Exchange,” 2019, [Online]. Available: https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=9192&context=etd.
  48. G. Buonasorte, F. Rizzi, and G. Passaleva, “Direct Uses of Geothermal Energy in Italy 2005-2009: Update Report and Perspectives,” Proc. World Geotherm. Congr., vol. 2006, no. April, pp. 25–29, 2010, [Online]. Available: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0151.pdf.
  49. S. Kinyanjui, “Direct use of geothermal energy in Menengai, Kenya: proposed geothermal spa and crop drying,” no. 9, 2014, [Online]. Available: http://rafhladan.is/handle/10802/7392.
  50. Á. Ragnarsson, “Geothermal Development in Iceland 2005-2009,” Proc. World Geotherm. Congr. 2015, no. April, pp. 19–25, 2010, [Online]. Available: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/01077.pdf.
  51. E. Mands, M. Sauer, E. Grundmann, B. Sanner, and U. Gbr, “Shallow geothermal energy use in industry in Germany,” Eur. Geotherm. Congr. 2016, vol. 2010, no. 2013, pp. 19–24, 2016, [Online]. Available: http://www.sanner-geo.eu/media/c8848455cf28212fffff8036fffffff1.pdf.
  52. L. Świątek, “A case study of geothermal resources use for the innovative aquaculture from perspective of syntropic development concept,” Int. J. Energy Prod. Manag., vol. 5, no. 1, pp. 60–69, 2020, doi: 10.2495/EQ-V5-N1-60-69.
  53. B. Kępińska and A. Kasztelewicz, “Public Perception of Geothermal Energy in Selected European Countries,” World Geotherm. Congr. 2015, no. April, pp. 19–25, 2015, [Online]. Available: https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/02036.pdf.
  54. S. Roumi, H. Yousefi, Y. Noorollahi, K. Bekhrad, and S. Zarrouk, “Direct Applications of Geothermal Energy; Economic and Environmental Assessment: Meshkin-Shahr, Iran,” 2017. https://www.researchgate.net/publication/313703791_Direct_Applications_of_Geothermal_Energy_Economic_and_Environmental_Assessment_Meshkin-Shahr_Iran (accessed Feb. 09, 2021).
  55. Á. Ragnarsson, “Geothermal Energy Use, Country Update for Iceland,” Eur. Geotherm. Congr. 2013, no. September, pp. 1–7, 2013, [Online]. Available: https://www.geothermal-energy.org/pdf/IGAstandard/EGC/2013/EGC2013_CUR-16.pdf.
  56. D. Chandrasekharam, A. Lashin, N. Al Arifi, A. Al Bassam, C. Varun, and H. K. Singh, “Geothermal energy potential of eastern desert region, Egypt,” Environ. Earth Sci., vol. 75, no. 8, pp. 1–15, Apr. 2016, doi: 10.1007/s12665-016-5534-4.
  57. M. Kostoglou, N. Chrysafis, and N. Andritsos, “Modelling Tomato Dehydration in a Tunnel Dryer Using Geothermal Energy,” Dry. Technol., vol. 31, no. 1, pp. 5–16, Dec. 2013, doi: 10.1080/07373937.2012.710694.
  58. M. F. Ezzat and I. Dincer, “Energy and exergy analyses of a new geothermal-solar energy based system,” Sol. Energy, vol. 134, pp. 95–106, Sep. 2016, doi: 10.1016/j.solener.2016.04.029.
  59. F. P. Song, L. X. Gong, L. W. Wang, and R. Z. Wang, “Study on gradient thermal driven adsorption cycle with freezing and cooling output for food storage,” Appl. Therm. Eng., vol. 70, no. 1, pp. 231–239, Sep. 2014, doi: 10.1016/j.applthermaleng.2014.04.066.
  60. Y. W. Yu, Y. Il Kim, and S. Park, “Energy Performance Analysis of Electric Heater and Heat Pump Food Dryers,” vol. 11, no. 4, pp. 1–6, 2015, [Online]. Available: https://www.koreascience.or.kr/article/JAKO201506050646887.pdf.
  61. Μ. Kostoglou, Ν. Chrysafis, and Ν. Andritsos, “Modeling a Tomato Dehydration Process Using Geothermal Energy,” Proc. World Geotherm. Congr., no. April, pp. 25–29, 2010, doi: 0.1080/07373937.2012.710694.
  62. D. Papasidero, S. Pierucci, and F. Manenti, “Energy optimization of bread baking process undergoing quality constraints,” Energy, vol. 116, pp. 1417–1422, Dec. 2016, doi: 10.1016/j.energy.2016.06.046.
  63. V. M. Ambriz-Díaz, C. Rubio-Maya, J. J. Pacheco Ibarra, S. R. Galván González, and J. Martínez Patiño, “Analysis of a sequential production of electricity, ice and drying of agricultural products by cascading geothermal energy,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 18092–18102, Jul. 2017, doi: 10.1016/j.ijhydene.2017.02.154.
  64. I. C. Violeta, P. Mariana, and V. Aurora, “RESEARCH RELATED TO THE MALT DRYING USING Geothermal Water,” pp. 181–186, 2011, doi: 10.31924/nrsd.
  65. M. Melikoglu, “Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey’s Vision 2023 energy targets,” Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, pp. 485–492, Sep. 01, 2017, doi: 10.1016/j.rser.2017.03.082.
  66. A. A. Ananno, M. H. Masud, P. Dabnichki, and A. Ahmed, “Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries,” Sol. Energy, vol. 196, pp. 270–286, Jan. 2020, doi: 10.1016/j.solener.2019.11.069.
  67. J. Koiwanit, “Energy efficiency and environmental impact analysis in grocery store market in Canada,” Int. J. GEOMATE, vol. 15, no. 49, pp. 30–36, 2018, doi: 10.21660/2018.49.3602.
  68. H. M. A. Jiménez, E. P. González, and A. García-Gutiérrez, “Installation and testing of the IIDEA geothermal food dehydrator in the Domo de San Pedro Nayarit Mexico geothermal field,” Trans. - Geotherm. Resour. Counc., vol. 42, pp. 1678–1689, 2018, [Online]. Available: http://pubs.geothermal-library.org/lib/grc/1033990.pdf.
  69. N. Yildirim and S. Genc, “Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy,” Energy, vol. 90, pp. 987–996, Oct. 2015, doi: 10.1016/j.energy.2015.08.003.
  70. Ş. Kılkış and B. Kılkış, “Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts,” J. Clean. Prod., vol. 167, pp. 1084–1098, Nov. 2017, doi: 10.1016/j.jclepro.2017.03.178.
  71. M. Aneke, B. Agnew, C. Underwood, H. Wu, and S. Masheiti, “Power generation from waste heat in a food processing application,” Appl. Therm. Eng., vol. 36, no. 1, pp. 171–180, Apr. 2012, doi: 10.1016/j.applthermaleng.2011.12.023.
  72. H. BAŞAK, S. Y. MADAKBAŞ, and G. GÜRDAL, “Feasibility of Vegetable Drying Technic by Geothermal Heating at City of Kirsehir,” Türk Tarım ve Doğa Bilim., vol. 6, no. 6, pp. 590-595–595, 2014, [Online]. Available: https://dergipark.org.tr/tr/download/article-file/142146.
  73. J. Bundschuh, B. Tomaszewska, N. Ghaffour, I. Hamawand, H. Mahmoudi, and M. Goosen, “Coupling geothermal direct heat with agriculture,” in Geothermal Water Management, CRC Press, 2018, pp. 277–300.
  74. R. Thorarinsdottir and R. Unnthorsson, “Direct Use of Geothermal Resources for Circular Food Production,” Proceedings, vol. 2, no. 8, p. 497, 2018, doi: 10.3390/icem18-05405.
  75. A. Hniman, S. O-Thong, and P. Prasertsan, “Developing a thermophilic hydrogen-producing microbial consortia from geothermal spring for efficient utilization of xylose and glucose mixed substrates and oil palm trunk hydrolysate,” in International Journal of Hydrogen Energy, Jul. 2011, vol. 36, no. 14, pp. 8785–8793, doi: 10.1016/j.ijhydene.2010.09.067.
  76. A. G. Bayrakci and G. Koçar, “Utilization of renewable energies in Turkey’s agriculture,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1. Elsevier Ltd, pp. 618–633, Jan. 01, 2012, doi: 10.1016/j.rser.2011.08.027.
  77. K. Fikiin et al., “Refrigerated warehouses as intelligent hubs to integrate renewable energy in industrial food refrigeration and to enhance power grid sustainability,” Trends in Food Science and Technology, vol. 60. Elsevier Ltd, pp. 96–103, Feb. 01, 2017, doi: 10.1016/j.tifs.2016.11.011.
Cómo citar
Vega, L. P., Parra Ramos, J. A., García Sarmiento, M. P., Ruiz Gaitán, M. A., & Pedraos Juya, L. A. (2022). Uso de la energía geotérmica en la industria alimenticia: una reseña. Revista Ingenierías Universidad De Medellín, 21(40), 67-86. https://doi.org/10.22395/rium.v21n40a5

Descargas

La descarga de datos todavía no está disponible.

Send mail to Author


Send Cancel

Estamos indexados en