Corrosion Behavior of Flame Sprayed Cr2O3 Coatings on Carbon Steel in Chloride Solutions

Howard Nuñez Celis | Bio
Universidad Industrial de Santander
Mauricio Rincón Ortiz | Bio
Universidad Industrial de Santander
Andrés González Hern´ández | Bio
Universidad Industrial de Santander

Abstract

Cr2O3 coatings were deposited on carbon steel through the flame spraying technique using two types of flames (neutral and oxidizing). The protective and morphological characteristics of the coatings were determined. The coatings had layer thickness values of 114 and 214µm for oxidizing and neutral samples, respectively. Porosity percentages of 4.5 % and 2.5 % were determined, where the neutral sample presented the greatest porosity due to the insufficient fusion of the oxide particles during the process, resulting in the formation of a heterogeneous and less compact layer. Microcracks and pores were found on the surface and cross-section of the coatings, due to the thermal expansion generated during the solidification process. The coating protective capacity was evaluated by electrochemical techniques over 672 hours in a 3.5 %wt NaCl saline solution. The results evidenced that the coatings manufactured with the oxidizing flame presented more corrosion resistance compared to those prepared with the neutral flame. The corrosion products were more evident in the neutral flame coatings, because of the diffusion mechanisms from the substrate to the surface coating through the interconnected pores. Finally, the wettability of the sodium chloride solution in the Cr2O3 coatings was measured by the contact angle technique, finding that the oxidizing flame coatings exhibited a higher angle contact value (64.8°) in contrast to the neutral flame coatings (35°).

References

  1. A. López-Ortega, J. L. Arana, E. Rodríguez, and R. Bayón, “Corrosion, wear and tribocorrosion performance of a thermally sprayed aluminum coating modified by plasma electrolytic oxidation technique for offshore submerged components protection,” Corros. Sci., vol. 143, pp. 258–280, Oct. 2018, doi: 10.1016/j.corsci.2018.08.001.
  2. D. Dwivedi, K. Lepková, and T. Becker, “Carbon steel corrosion: a review of key surface properties and characterization methods,” RSC Adv., vol. 7, no. 8, pp. 4580–4610, 2017, doi: 10.1039/C6RA25094G.
  3. A. López-Ortega, R. Bayón, and J. L. Arana, “Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater,” Surf. Coatings Technol., vol. 349, pp. 1083–1097, Sep. 2018, doi: 10.1016/j.surfcoat.2018.06.089.
  4. Y. Ma, Y. Li, and F. Wang, “Corrosion of low carbon steel in atmospheric environments of different chloride content,” Corros. Sci., vol. 51, no. 5, pp. 997–1006, May 2009, doi: 10.1016/j. corsci.2009.02.009.
  5. B. Syrek-Gerstenkorn, S. Paul, and A. J. Davenport, “Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones,” Surf. Coatings Technol., vol. 374, no. April, pp. 124–133, 2019, doi: 10.1016/j.surfcoat.2019.04.048.
  6. K. V. Sreenivas Rao, G. C. Tejaswini, and K. G. Girisha, “Corrosion Behavior of Plasma Sprayed Cr2O3 - Al2O3 - ZrO2 Multilayer Coatings on Mild Steel,” 2018, doi: 10.1016/j.matpr.2018.10.200.
  7. A. V. Pinzón, K. J. Urrego, A. González-Hernández, M. Rincón Ortiz, and F. Vargas Galvis, “Corrosion protection of carbon steel by alumina-titania ceramic coatings used for industrial applications,” Ceram. Int., vol. 44, no. 17, 2018, doi: 10.1016/j.ceramint.2018.08.273.
  8. Z. Liu, Y. Dong, Z. Chu, Y. Yang, Y. Li, and D. Yan, “Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulated seawater,” Mater. Des., vol. 52, no. 29, pp. 630–637, 2013, doi: 10.1016/j.matdes.2013.06.002.
  9. A. S. Hamdy, D. P. Butt, and A. A. Ismail, “Electrochemical impedance studies of sol-gel based ceramic coatings systems in 3.5% NaCl solution,” Electrochim. Acta, vol. 52, no. 9, pp. 3310–3316, 2007, doi: 10.1016/j.electacta.2006.10.036.
  10. X. Huang, S. Sun, and G. Tu, “Investigation of mechanical properties and oxidation resistance of CVD TiB2 ceramic coating on molybdenum,” J. Mater. Res. Technol., vol. 9, no. 1, pp. 282–290, 2020, doi: 10.1016/j.jmrt.2019.10.056.
  11. J. Lawal, P. Kiryukhantsev-Korneev, A. Matthews, and A. Leyland, “Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings,” Surf. Coatings Technol., vol. 310, pp. 59–69, 2017, doi: 10.1016/j.surfcoat.2016.12.031.
  12. P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal spray fundamentals: From powder to part. 2014.
  13. V. R. S. Sá Brito, I. N. Bastos, and H. R. M. Costa, “Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel,” Mater. Des., vol. 41, pp. 282–288, Oct. 2012, doi: 10.1016/j.matdes.2012.05.008.
  14. P. Zamani and Z. Valefi, “Microstructure, phase composition and mechanical properties of plasma sprayed Al2O3, Cr2O3 and Cr2O3-Al2O3 composite coatings,” Surf. Coatings Technol., vol. 316, pp. 138–145, 2017, doi: 10.1016/j.surfcoat.2017.03.022.
  15. A. M. Oje, A. A. Ogwu, S. U. Rahman, A. I. Oje, and N. Tsendzughul, “Effect of temperature variation on the corrosion behaviour and semiconducting properties of the passive film formed on chromium oxide coatings exposed to saline solution,” Corros. Sci., vol. 154, no. April, pp. 28–35, 2019, doi: 10.1016/j.corsci.2019.04.004.
  16. P. S. Babu, D. Sen, A. Jyothirmayi, L. R. Krishna, and D. S. Rao, “Influence of microstruc- ture on the wear and corrosion behavior of detonation sprayed Cr2O3-Al2O3 and plasma sprayed Cr2O3 coatings,” Ceram. Int., vol. 44, no. 2, pp. 2351–2357, 2018, doi: 10.1016/j. ceramint.2017.10.203.
  17. F. Fanicchia, D. A. Axinte, J. Kell, R. McIntyre, G. Brewster, and A. D. Norton, “Combustion Flame Spray of CoNiCrAlY & YSZ coatings,” Surf. Coatings Technol., vol. 315, pp. 546–557, 2017, doi: 10.1016/j.surfcoat.2017.01.070.
  18. A. Förg, M. Blum, A. Killinger, J. A. Moreno Nicolás, and R. Gadow, “Deposition of chromium oxide-chromium carbide coatings via high velocity suspension flame spraying (HVSFS),” Surf. Coatings Technol., vol. 351, no. July, pp. 171–176, 2018, doi: 10.1016/j. surfcoat.2018.07.072.
  19. X. B. Liang, J. C. Shang, Y. X. Chen, Z. D. Zhou, Z. B. Zhang, and B. S. Xu, “Influence of ceramic particles and process parameters on residual stress of flame-sprayed Fe-based coatings,” Surf. Coatings Technol., vol. 354, no. August, pp. 10–17, 2018, doi: 10.1016/j. surfcoat.2018.08.069.
  20. R. Rachidi, B. El Kihel, and F. Delaunois, “Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 241, no. November 2017, pp. 13–21, 2019, doi: 10.1016/j.mseb.2019.02.002.
  21. ASTM International, “ASTM E2109−01: Test Methods of Determining Area Percentage Porosity in Thermal Sprayed Coatings,” Stand. Test Methods Determ. Area Percent. Poro- sity Therm. Sprayed Coatings, vol. 01, no. Reapproved 2014, pp. 1–8, 2014, doi: 10.1520/ E2109-01R14.2.
  22. ASTM G 106, “Standard Practice for Verification of Algorithm and Equipment for Electro- chemical Impedance Measurements,” Astm, vol. 03, no. Reapproved, pp. 1–11, 1999, doi: 10.1520/G0106-89R10.2.
  23. S. K. Sriramoju, Rashmi, A. Suresh, and P. S. Dash, “Generation of low ash fine clean coal powder by autogenous grinding process powder technology,” Powder Technol., vol. 342, pp. 67–72, 2019, doi: 10.1016/j.powtec.2018.09.079.
  24. N. H. N. Yusoff, M. J. Ghazali, M. C. Isa, A. R. Daud, and A. Muchtar, “Effects of powder size and metallic bonding layer on corrosion behaviour of plasma-sprayed Al2O3-13% TiO2 coated mild steel in fresh tropical seawater,” Ceram. Int., vol. 39, no. 3, pp. 2527–2533, 2013, doi: 10.1016/j.ceramint.2012.09.012.
  25. E. C. Iglesias, C. P. Velásquez, and F. V. Galvis, “Estudio de llamas oxiacetilénicas usadas en la proyección térmica,” no. 9, pp. 15–26, 2016.
  26. E. E. Balić, M. Hadad, P. P. Bandyopadhyay, and J. Michler, “Fundamentals of adhesion of thermal spray coatings: Adhesion of single splats,” Acta Mater., vol. 57, no. 19, pp. 5921–5926, 2009, doi: 10.1016/j.actamat.2009.08.042.
  27. F. Vargas, H. Ageorges, P. Fauchais, M. E. López, and J. A. Calderon, “Permeation of saline solution in Al2O3-13wt.% TiO2 coatings elaborated by atmospheric plasma spraying,” Surf. Coatings Technol., vol. 220, pp. 85–89, 2013, doi: 10.1016/j.surfcoat.2012.11.038.
  28. S. K. Singh, S. P. Tambe, G. Gunasekaran, V. S. Raja, and D. Kumar, “Electrochemical impedance study of thermally sprayable polyethylene coatings,” Corros. Sci., vol. 51, no. 3, pp. 595–601, 2009, doi: 10.1016/j.corsci.2008.11.025.
  29. S. L. De Assis, S. Wolynec, and I. Costa, “Corrosion characterization of titanium alloys by electrochemical techniques,” Electrochim. Acta, vol. 51, no. 8–9, pp. 1815–1819, 2006, doi: 10.1016/j.electacta.2005.02.121.
  30. V. F. ILvovich, Impedance spectroscopy: Applications to Electrochemical and Dielectric Phenomena. New Jerdey: Wiley, 2012.
  31. A. K. Basak, J. P. Celis, P. Ponthiaux, F. Wenger, M. Vardavoulias, and P. Matteazzi, “Effect of nanostructuring and Al alloying on corrosion behaviour of thermal sprayed WC-Co coatings,” Mater. Sci. Eng. A, vol. 558, pp. 377–385, 2012, doi: 10.1016/j.msea.2012.08.015.
  32. F. Shao, K. Yang, H. Zhao, C. Liu, L. Wang, and S. Tao, “Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3-Al2O3 composite ceramic coatings,” Surf. Coatings Technol., vol. 276, pp. 8–15, 2015, doi: 10.1016/j.surfcoat.2015.06.045.
  33. C. Haixiang and K. Dejun, “Comparison on electrochemical corrosion performances of arc and laser thermal sprayed Al–Ti–Ni coatings in marine environment,” Mater. Chem. Phys., vol. 251, no. January, p. 123200, 2020, doi: 10.1016/j.matchemphys.2020.123200.
  34. E. McCafferty, Introduction to corrosion science, Springer. Alexandria VA: Springer, 2010.
  35. Y. Zuo, R. Pang, W. Li, J. P. Xiong, and Y. M. Tang, “The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS,” Corros. Sci., vol. 50, no. 12, pp. 3322–3328, 2008, doi: 10.1016/j.corsci.2008.08.049.
  36. H. S. Lee, J. K. Singh, and J. H. Park, “Pore blocking characteristics of corrosion pro- ducts formed on Aluminum coating produced by arc thermal metal spray process in 3.5 wt.% NaCl solution,” Constr. Build. Mater., vol. 113, pp. 905–916, 2016, doi: 10.1016/j. conbuildmat.2016.03.135.
  37. Z. Bergant, U. Trdan, and J. Grum, “Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings,” Corros. Sci., vol. 88, pp. 372–386, 2014, doi: 10.1016/j.corsci.2014.07.057.
  38. M. Stern and A. . Geary, “Electrochemical polarization; I. Polarization curves,” J. Electro- chem., vol. 104, pp. 56–63, 1957.
  39. S. . Dean, W. . France, and S. . Ketcham, “Electrochemical Methods” Hanbook on Corrosion Testing and Evaluation. New York: John Wiley, 1971.
  40. ASTM G102-89, “Standard Practice for Calculation of Corrosion Rates and Related infor- mation from Electrochemical Measurements,” ASTM, pp. 1–7, 2015.
  41. X. Wang, B. Lv, Z. Hu, and B. Xu, “Corrosion resistance in sodium chloride solution of Ni-Co-P electro-brush amorphous coatings to replace hard chromium coatings,” Phys. Procedia, vol. 50, no. October 2012, pp. 191–198, 2013, doi: 10.1016/j.phpro.2013.11.031.
  42. T. S. Hamidon and M. H. Hussin, “Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl,” Prog. Org. Coatings, vol. 140, no. November 2019, p. 105478, 2020, doi: 10.1016/j.porgcoat.2019.105478.
  43. Y. M. Liu, Z. Q. Wu, and D. C. Yin, “Measurement of contact angle under different gravity generated by a long-arm centrifuge,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 588, no. December 2019, p. 124381, 2020, doi: 10.1016/j.colsurfa.2019.124381.
  44. N. Karthik, S. Asha, and M. G. Sethuraman, “Influence of pH-sensitive 4-aminothiophenol on the copper corrosion inhibition of hybrid sol–gel monolayers,” J. Sol-Gel Sci. Technol., vol. 78, no. 2, pp. 248–257, 2016, doi: 10.1007/s10971-015-3944-5.
How to Cite
Nuñez Celis, H., Rincón Ortiz, M., & González Hern´ándezA. (2022). Corrosion Behavior of Flame Sprayed Cr2O3 Coatings on Carbon Steel in Chloride Solutions. Revista Ingenierías Universidad De Medellín, 21(40), 143-162. https://doi.org/10.22395/rium.v21n40a9

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in