Information systems focused on precision agricultural technologies applicable to sugar cane, a review

Oscar Arley Orozco Sarasti | Bio
Universidad Icesi
Gonzalo Llano Ramírez | Bio
Universidad Icesi

Abstract

Crops of sugar cane are one of the main economic activities in Colombia. Hence, this kind of crops is essential for the agricultural development of the country. Additionally, information and communication technologies (ICTs) are currently used and implemented throughout the entire life of the crop. Therefore, ICTs are important at the time of defining PA-based systems, capable of increasing crop efficiency and optimizing use of economic resources as fertilizers, water, and pesticides, among other functions. This article presents a review about the PA-based information systems applicable to sugar cane crops and making emphasis on technologies used, data management, and their architectures. Besides, the article makes a proposal of authors: a AP-based three-layer integral information system capable of facilitating optimization in different life stages of the sugar cane. This article concludes by describing the future work and the implementation of the system proposed.

References

[1] Food and Agriculture Organization for the United Nations, “FAO Statistical Yearbook 2013: World food and agriculture,” Roma, 2013.

[2] C. Silva, M. Moraes, y J. Molin, “Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil,” Precision Agriculture, vol. 12, n.° 1, pp. 67–81, 2010.

[3] R. Bramley, “Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application,” Crop. Pasture Science, vol. 60, n.° 3, pp. 197–217, 2009.

[4] R. Plumb, “Precision agriculture in the 21st century: geospatial and information technologies in crop management,” Pest Management Science, vol. 56, n.° 8, pp. 723–723, 2000.

[5] R. Grisso, M. Alley, P. McClellan, D. Brann, y S. Donohue, “Precision Farming. A Comprehensive Approach,” Virginia Cooperative Extension, Publication 442-500, Virginia State University, 2009.

[6] A. Dobermann, S. Blackmore, S. Cook, y V. Adamchuk, “Precision Farming: Challenges and Future Directions,” presentado en Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 2004.

[7] P. Tozer, “Uncertainty and investment in precision agriculture – Is it worth the money?” Agricultural Systems, vol. 100, n.° 1–3, pp. 80–87, 2009.

[8] M. Rilwani y J. Oghenereemusua, “Geoinformatics in Agricultural Development: Challenges and Prospects in Nigeria,” Journal of Social Sciences, vol. 21, n.° 1, pp. 49–57, 2009.

[9] B. Kitchenham y S. Charters, “Guidelines for performing Systematic Literature Reviews in Software Engineering,” Keele University and Durham University Joint Report, UK, EBSE 2007-001, 2007.

[10] J. Cock et al., “Crop management based on field observations: Case studies in sugarcane and coffee,” Agricultural Systems, vol. 104, n.° 9, pp. 755–769, 2011.

[11] J. Demattê, L. Demattê, E. Alves, R. Negrão, y J. L. Morelli, “Precision agriculture for sugarcane management: a strategy applied for brazilian conditions,” Acta Scientiarum. Agronomy, vol. 36, n.° 1, pp. 111–117, 2014.

[12] D. López et al., “Sistema integrado para recomendar dosis de fertilización en caña de azúcar (SIRDF),” Terra Latinoamericana, vol. 20, n.° 3, pp. 347-358, 2002.

[13] B. Stray, J. van Vuuren, y C. Bezuidenhout, “An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa,” Computers and Electronics in Agriculture, vol. 83, pp. 21–31, 2012.

[14] C. Zhang, D. Walters, y J. M. Kovacs, “Applications of Low Altitude Remote Sensing in Agriculture upon Farmers’ Requests – A Case Study in Northeastern Ontario, Canada,” PLoS ONE, vol. 9, n.° 11, pp. 1-9, 2014.

[15] G. López, “Diseño de un programa de ortorectificación y georreferenciación de imágenes aéreas aplicadas a campos de caña de azúcar,” Pontificia Universidad Católica del Perú, Lima, Perú, 2014.

[16] G. Schneider, A. Hadad, y A. Kemerer, “Implementación de un software para el análisis de imágenes aéreas multiespectrales de caña de azúcar,” Ventana Informática, vol. 28, n.° 1, pp. 13–29, 2013.

[17] E. Hunt, C. Daughtry, S. Mirsky, y W. Hively, “Remote Sensing With Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, n.° 11, pp. 4566–4571, 2014.

[18] F. Urbano, “Redes de sensores inalámbricos aplicadas a optimización en agricultura de precisión para cultivos de café en Colombia,” Journal de Ciencia e Ingeniería, vol. 5, n.° 1, pp. 46–52, 2013.

[19] K. Sudduth, S. Drummond, y N. Kitchen, “Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture,” Computers and Electronics in Agriculture, vol. 31, n.° 3, pp. 239–264, 2001.

[20] N. Nawi, G. Chen, y T. Jensen, “In-field measurement and sampling technologies for monitoring quality in the sugarcane industry: a review,” Precision Agriculture, vol. 15, n.° 6, pp. 684–703, 2014.

[21] R. Price, R. Johnson, R. Viator, J. Larsen, y A. Peters, “Fiber Optic Yield Monitor for a Sugarcane Harvester,” Transactions of the ASABE, vol. 54, n.° 1, pp. 31–39, 2011.

[22] J. Molin, F. Frasson, L. Amaral, F. Povh, y J. Salvi, “Capability of an optical sensor in verifying the sugarcane response to nitrogen rates,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, n.° 12, pp. 1345–1349, 2010.

[23] Z. de Souza et al., “Analyze the soil attributes and sugarcane yield culture with the use of geostatistics and decision trees,” Ciência Rural, vol. 40, n.° 4, pp. 840–847, 2010.

[24] J. Carbonell, “Experiencia del sector cañicultor en agricultura específica por sitio,” Palmas, vol. 29, n.° 2, pp. 65–70, 2008.

[25] J. Markley y J. Hughes, “Understanding the Barriers to the Implementation of Precision Agriculture in the Central Region,” presentado en 35th Annual Conference of the Australian Society of Sugar Cane Technologists, Townsville, Australia, 2013.

[26] J. Serrano, J. Peça, J. Silva, y S. Shahidian, “Aplicação de fertilizantes: tecnologia, eficiência energética e ambiente”. Revista de Ciências Agrárias, vol. 37, n.° 3, pp. 270–279, 2014.

[27] J. Ye, B. Chen, Q. Liu, y Y. Fang, “A precision agriculture management system based on Internet of Things and WebGIS,” presentado en 2013 21st International Conference on Geoinformatics (GEOINFORMATICS), Kaifeng, China, 2013.

[28] B. Keating y R. McCown, “Advances in farming systems analysis and intervention,” Agricultural Systems, vol. 70, n.° 2–3, pp. 555–579, 2001.

[29] C. Driemeier et al., “Data Analysis Workflow for Experiments in Sugarcane Precision Agriculture,” in 2014 IEEE 10th International Conference on e-Science (e-Science), Guarujá, Brasil, 2014.

[30] Y. Wang, Y. Wang, X. Qi, y L. Xu, “OPAIMS: open architecture precision agriculture information monitoring system,” presentado en Proceedings of the 2009 International conference on Compilers, architecture, and synthesis for embedded systems, Grenoble, Francia, 2009.
How to Cite
Orozco Sarasti, O. A., & Llano Ramírez, G. (2015). Information systems focused on precision agricultural technologies applicable to sugar cane, a review. Revista Ingenierías Universidad De Medellín, 15(28), 103-124. https://doi.org/10.22395/rium.v15n28a6

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in