Non-conventional absorbers: sustainable alternatives for wastewater treatment

Main Article Content

Maria Guadalupe Valladares-Cisneros
Cintya Valerio Cárdenas
Patricia de la Cruz Burelo
Rosa María Melgoza Alemán

Abstract

This article shows a revision of the non-conventional absorbers employed for the removal of water pollutants. A brief description is made on the conventional absorbers in order to distinguish them from the non-conventional ones. Conventional absorbers are those natural or synthetic materials which employment is contingent with a treatment process so that they can be activated, such as carbon, clays, membranes, etc. After using these materials, they are able to be regenerated. Non-conventional absorbers are alternate materials (biopolymers or parts of plants); they should not necessarily be subject to a previous treatment to be activated; however, activation improves their absorption capacity. Sources studied for obtaining the materials employed as non-conventional absorbers include agroindustrial wastes, food industry wastes, and plant species which application is restricted or has no application at all. Different studies have shown that the employment of natural materials as non-conventional absorbers allows minimizing the organic discharge of a river contaminated with metals, dyes, pesticides, and other organic compounds known as emerging compounds. The fields of study for non-conventional materials emerge as a need for the design of sustainable process for the wastewater treatment; for this reason, the study and revision of non-conventional materials are of special interest to go deeper and propose alternative according to the existing needs.

How to Cite
Valladares-Cisneros, M. G., Valerio Cárdenas, C., de la Cruz Burelo, P., & Melgoza Alemán, R. M. (2018). Non-conventional absorbers: sustainable alternatives for wastewater treatment. Revista Ingenierías Universidad De Medellín, 16(31), 55–73. https://doi.org/10.22395/rium.v16n31a3

Article Details

References

[1] M. F. Chaplin. 'Water: its importance to life'. Biochem & Mol Biol Edu., vol. 29, n.° 2, pp. 54-59, February 2001

[2] R. Breslow. 'The principles of and reasons for using water as a solvent for green chemistry. In Handbook of Green Chemistry. P. T. Anastas Editor. John Wiley and Sosn. Inc. pp. 1-30, March 2010.

[3] J. Carabias, y R. Landa. 'Agua, medio ambiente y sociedad. Hacia la gestión integral de los recursos hídricos en México'. México, D. F., Ed. UNAM, Colegio de México. Fundación Gonzalo Río Arronte. 2005.

[4] N. Yildiz, R. Gonulsena, H. Koyuncu, A. Calimi. 'Adsorption of benzoic acid and hydroquinone by organically modified bentonites'. Colloids Surf A, 260, 87-94, June 2005.

[5] L-G. Yan, J. Wang, H-Q. Yu, Q. Wei, B. Du, X-Q. Shan. 'Adsorption of benzoic acid by CTAB exchanged montmorillonite'. Appl Clay Sci, 37 (3-4), 226-230, January 2007.

[6] M. J. Gil, A. M. Soto, J. I. Usma, O. D. Gutiérrez. 'Contaminantes emergentes en aguas, efectos y posibles tratamientos'. Producción + Limpia, vol. 7, n.° 2, pp. 52-73, julio-diciembre 2012.

[7] R. Vallejo-Rodríguez, M. A. Murillo-Tovar, L. Hernández-Mena, H. Saldarriaga-Noreña, A. López-López. 'Compuestos emergentes: Implementación de métodos analíticos para extraer y cuantificar 17β-estradio, 17 β-etinilestradiol, ibuprofeno y naproxeno en agua. Tecnología y Ciencias del Agua, vol. III, pp. 101-110, febrero-marzo 2012.

[8] B. C. Pan, Y. Xiong, A. M. Li, J. L. Chen, Q. X. Zhang, X. Y. Jin. 'Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer'. React. Funct. Polym, vol. 53, n.° 2-3, pp. 63-72, december 2002.

[9] O. A. Titi and O. S. Bello. 'An overview of low cost adsorbents for Copper (II) ions removal'. J. Biotechnol. & Biomater, vol. 5, n.° 1, pp 1-13, February 2015.

[10] N. Das, R. Vimala, P. Karthika. 'Biosorption of heavy metals-An overview'. Indian journal of Biotechnology, vol. 7, n.° 2, pp. 159-169. 2008.

[11] E. S. Z. El-Ashtoukhy, N. K. Amina, O. Abdelwahab. 'Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent'. Desalination, vol. 223, n.° 1, pp. 162-173, February 2008.

[12] K. S. W. Sing. 'Characterization of porous materials: past, present and future'. Colloids Surf A: Physicochem. Eng. Asp., vol. 241, no. 1-3, pp. 3-7, July 2004.

[13] C. Nava-Ruiz, Y M. Méndez-Armenta. 'Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio)'. Arch. Neurocienc., vol. 16, no. 3, pp. 140-147, julio-septiembre 2011.

[14] A. Mittal, L. Kurup, J. Mittal. 'Freundlich and Langmuir adsorption isotherms and kinetics for the removal tartrazine from aqueous solutions using hen feathers'. J Hazard Mater, vol. 146, n,° 1-2, pp. 243-248, December 2007.

[15] T. Robinson, B. Chandran, P. Nigam. 'Removal of dyes from a synthetic textile dye effluent by biosorption on Apple pomace and wheat Straw'. Water Res, vol. 36, n.° 11, pp. 2824-2830, June 2002.

[16] N. Kannan, M. M. Sundaram. 'Kinetics and mechanism of removal of methylene blue by adsorption on various carbons. A comparative study'. Dyes Pigments, vol. 51, n.° 1, pp. 25-40, September 2001.

[17] V. K. Gupta and Suhas. 'Application of low-cost adsorbents for dye removal -A review'. J Environ Manage, vol. 90, n.° 8, pp. 2312-2342, June 2009.

[18] G. E. Walsh, L. H. Bahner and W. B. Horning. 'Toxicity of textile mill effluents to freshwater and estuarine algae, crustaceans and fishes'. Environ. Pollut. A, vol. 21, n.° 3, pp. 169-179, March 1980.

[19] B. de Campos and M. A. Marin. 'Azo dyes: Characterization and toxicity -A review-'. TLIST, vol. 2, n.° 2, pp. 85-103, April 2013.

[20] A. E. Ghaly, R. Ananthashankar, M. Alhattab and V. V. Ramakrishnan. 'Production, characterization and treatment of textile effluents: A critical review'. J Chem Eng Process Technol., vol. 5, n.° 1, pp. 1-19, January 2014.

[21] F. M. Drumond Chequer, G. A. Rodrigues, E. R. Anastácio, J. Carvalho, M. V. Boldrin and D. Palma. 'Textile dyes: dyeing process and environmental impact'. In Eco-friendly textile dyeing and finishing, Dr. Melih Gunay (Ed.), InTech, DOI: 10.5772/53659, pp. 151-176, January 2013.

[22] Y. L. Pang and A. Z. Abdullah. 'Current status of textile industry wastewater management and research progress in Malaysia: A review'. CLEAN- Soil, Air, Water, vol. 41, n.° 8, pp. 751-764, August 2013.

[23] A. Hasanbeigi and L. Price. 'A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry'. J Clean Prod, vol. 95, pp. 30-44, May 2015.

[24] Y. Fushiwaki, K. Uranob. 'Adsorption of pesticides and their biodegraded products on clay minerals and soils'. J Health Sci, vol. 47, n.° 4, pp. 429-432, July 2001.

[25] J. Rubio, F. Tessele. 'Removal of heavy metal ions by adsorptive particulate flotation'. Miner Eng, vol. 10, n.° 7, pp. 671-679, July 1997.

[26] C. R. Silva, T. F. Gomes, G. C. R. M. Andrade, S. H. Monteiro, A. C. R. Dias E. G. Zagatto, V. L. Tornisielo. 'Banana peel as an adsorbent for removing atrazine and ametryne from waters'. J Agric Food Chem, vol. 61, n.° 10, pp. 2358-2363, January 2013.

[27] S. E. Agarry, C. N. Owabor, A. O. Ajani. 'Modified plantain peel as cellulose-based low-cost adsorbent for the removal of 2, 6-dichlorophenol from aqueous solution: adsorption isotherms, kinetic modeling, and thermodynamic studies'. Chem Eng Commun, vol. 200, n.° 8, pp. 1121-1147, March 2013.

[28] T. J. I. Edison, M. G. Sethuraman. 'Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol'. Spectrochim Acta A Mol Biomol Spectrosc, vol. 104, pp. 262-264, March 2013.

[29] U. A. El-Nafaty, I. M. Muhammad, S. Abdulsalam. 'Biosorption and kinetic studies on oil removal from produced water using banana peel'. Civil Environ Res, vol. 3, n.° 7, pp. 125-136, July 2013.

[30] A. Borhan, P. K. Hoong, M. F. Taha. 'Biosorption of heavy metal ions, oil and grease from industrial waste water by banana peel'. Appl Mech Mater, vol. 625, pp. 749-752, September 2014.

[31] J. Zou, X. Liu, W. Chai, X. Zhang, B. Li, Y. Wanga, and Y. Ma. 'Sorption of oil from simulated seawater by fatty acid modified pomelo peel'. Desalin Water Treat, vol. 339, n.° 4, pp. 1-8, July 2014.

[32] A. K. Mehari, S. Gebremedhin and B. Ayele. 'Effects of Bahir Dar textile factory effluents on the water quality of the head waters of Blue Nile River, Ethiopia'. Int. J Anal Chem., vol. 2015, Article ID 905247, pp. 1-7, November 2015.

[33] G. McDougall. 'The physical nature and manufacture of activated carbon'. J S. Afr. Ins. Min. Metall, vol. 91, n.° 4, pp. 109-120, April 1991.

[34] R. Sivaraj, C. Namasivayam and K. Kadirvelu. 'Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Management, vol. 21, n.° 1, pp. 105-110, January 2001

[35] M. Fomina and G. M. Gadd. 'Biosorption: current perspectives on concept, definition and application'. Bioresour. Technol., vol. 160, pp. 3-14, May 2014.

[36] P. A. M. Mourao, O. J. M. Carrot and M. M. L. Ribeiro Carrot. 'Application of different equations to adsorption isotherms of phenolic compounds on activated carbons prepared from cork'. Carbon, vol. 44, n.° 12, pp. 2422-2429, October 2006.

[37] S. Nethaji, A. Sivasamy and A. B. Mandal. 'Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass'. Int. J. Environ. Sci. Technol., vol., 10, n.° 2, pp. 231-242, March 2013.

[38] B. H. Hameed and M. I. El-Khaiary. 'Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modelling' J Hazard Mater., vol. 159, n.° 2-3, pp. 574-579, February 2008.

[39] F. N. Memon and S. Memon. 'Sorption and desorption of basic dyes from industrial wastewater using calix[4]arene based impregnated material' Separation Sci and Technol., vol. 50, n.° 8, pp. 1135-1146, January 2015.

[40] J. Tao and A. M. Rappe. 'Physical Adsorption: Theory of van der Waals Interactions between particles and clean surfaces'. Physic. Rev. Lett., vol. 112, n.° 10, pp. 106101, March 2014.

[41] P. D. Pathak, S. A. Mandavgane and B. D. Kulkarni. 'Characterizing fruit and vegetable peels as bioadsorbents'. Curr Sci., vol. 110, n.° 11, pp. 2114-2123, June 2016.

[42] S. Patel. 'Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies'. Rev Environ Sci Bio/Technol, vol. 11, n.° 4, pp. 365-380, December 2012.

[43] A. Bhatnagar, V. J. Vilar, C. M. Botelho and R. A. Boaventura. 'Coconut-based biosorbents for water treatment-a review of the recent literatura'. Adv Colloid Interface Sci, vol. 160, n.° 1-2, pp. 1-15, October 2010.

[44] H. R. Losada, L. L. Rodríguez, J. C. Zorrilla and J. M. Vargas. 'The use of organic waste from animals and plants as important input to urban agriculture in México City'. Int J Appl Sci Technol, vol. 5, n.° 1, pp. 38-44, February 2015.

[45] H. Losada, J. Cortes, J. Rivera and J. Vargas. 'Recycling of solid wastes in Mexico City in livestock and agricultural production systems as a sustainable alternative'. Field Actions Science Reports. The Journal of Field Actions, vol. 5, pp. 1-11, 2011.

[46] P. Sharma, H. Kaur, M. Sharma and V. Sahore. 'A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste'. Environ Monit Assess, vol. 183, n.° 1, pp. 151-195, March 2011.

[47] J. Lehmann, J. Gaunt and M. Rondon. 'Bio-char sequestration in terrestrial ecosystems - a review', Mitig. Adapt. Strateg. Glob. Chang., vol. 11, n.° 2, pp. 395-419, March 2006.

[48] D. Mohan, A. Sarswat, Y. S. Ok and C. U. Pittman. 'Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review', Bioresour. Technol., vol. 160, special n.°, pp. 191-202, May 2014.

[49] D. Woolf, J. E. Amonette, F. A. Street-Perrott, J. Lehmann and S. Joseph. 'Sustainable biochar to mitigate global climate change', Nat. Commun., vol. 1, n.° 5, pp. 56, July 2010.

[50] A. D. Zapata, C. A. Escobar, S. F. Cavalitto and R. Hours. 'Evaluación de la capacidad de solubilización de pectina de cáscara de limón usando protopectinasa-se'. Vitae, vol. 16, n.° 1, pp. 67-74, Enero 2009.

[51] R. Sthornvit and N. Pitak. 'Oxygen permeability and mechanical properties of banana films'. Food Res Int., vol. 40, n.° 3, pp. 365-370, April 2007.

[52] V. Coma. 'Polysaccharide-based biomaterials with antimicrobial and antioxidant properties'. Polímeros, vol. 20, n.° 2, pp. 1-12, marzo-abril 2010.

[53] M. L. Fishman and P. H. Cooke. 'The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM'. Carbohydr. Res., vol. 344, n.° 14, pp. 1792-1797, September 2009.

[54] S. Yoo, M. L. Fishman, A. T.Hotchkiss and H. G. Lee. 'Viscometric behavior of high-methoxy and low-methoxy pectin solutions'. Food Hydrocolloids, vol. 20, n.° 1, pp. 62-67, March 2006.

[55] K. K. Woo, Y. Y. Chong, S. K. Li Hiong and P. Y. Tang. 'Pectin extraction and characterization from red dragon fruit (Hylocereus polyrhizus): A preliminary study'. J Biol. Sci., vol. 10, n.° 7, pp. 631-636, October 2010.

[56] H. Ueno, M. Tanak, M. Hosino, M. Sasaki and M. Goto. 'Extraction of valuable compounds from the albedo of Citrus junos using subcritical water'. Sep. Purif. Technol., vol. 62, n.° 3, pp. 513-516, September 2008.

[57] A. Chowdhury, A. Bhowal and S. Datta. 'Equilibrium, thermodynamic and kinetic studies for removal of copper (II) from Aqueous solution by onion and garlic skin'. Water, vol. 4, pp. 37-51, November 2012.

[58] S. Saber-Samandari and J. Heydaripour. 'Onion membrane: an efficient adsorbent for decoloring of wastewater'. J Environ. Health Sci. Eng., vol. 13, n.° 16, pp. March 2015.

[59] L. B. L. Lim, N. Priyantha, D. T. B. Tennakoon, H. I. Chieng, M. K. Dahri and M. Suklueng. 'Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies'. Arabian J Chem, Doi: 10.1016/j.arabjc.2013.12.018, January 2014.

[60] K. M. Sreenivas, M. B. Inarkar, S. V. Gokhale and S. S. Lele. 'Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: equilibrium and column studies'. J Environ Chem Eng, vol. 2, n.° 1, pp. 455-462, March 2014.

[61] M. Iqbal, A. Saeed and S. I. Zafar. 'FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste'. J Hazard Mater, vol. 164, n.° 1, pp. 161-171, May 2009.

[62] G. E. Do Nascimento, M. M. Menezes, N. Campos, O. R. Sá Da Rocha and V. Lins Da Silva. 'Adsorption of azo dyes using peanut hull and orange peel: a comparative study'. Environ Technol, vol. 35, n.° 11, pp. 1436-1453, 2014.

[63] T. Smitha, T. Santhi, A. L. Prasad and S. Mononmani. 'Cucumis sativus used as adsorbent for the removal dyes from aqueous solution'. Arabian J Chem., vol. 4, pp. August 2012.

[64] N. Priyantha, L. B. L. Lim and M. K. Dahri. 'Dragon fruit skin as a potential biosorbent for the removal of methylene blue dye from aqueous solution'. Int Food Res J., vol. 22, n.° 5, pp. 2141-2148, September – October 2015.

[65] C. Palma, E. Contreras, J. Urra and M. J. Martínez. 'Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater'. Waste Biomass Valorization, vol. 2, n.° 2, pp. 77-86, November 2011.

[66] M. Thirumavalavan, Y. L. Lai, L. C. Lin and J. F. Lee. 'Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution Langmuir adsorption isotherms'. J Chem Eng Data, vol. 55, n.° 3, pp. 1186-1192, October 2010.

[67] A. Gilioli, M. Cavejon and M. G. N. Quadri. 'C. hildmannianus peel for protein adsorption'. Chem Eng Trans, vol. 32, pp. 1099-1104, June 2013

[68] A. Bhatnagar and A. K. Minocha. 'Adsorptive removal of 2, 4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement'. J Hazard Mater, vol. 168, n.° 2-3, pp. 1111-1117, September 2009.

[69] F. Güzel, Ö. Aksoy and G. Akkaya. 'Application of pomegranate (Punica granatum) pulp as a new biosorbent for the removal of a model basic dye (methylene blue)'. World Appl Sci J., vol. 20, n.° 7, pp. 965-975, January 2012.

[70] F. Deniz. 'Adsorption properties of low-cost biomaterial derived from Prunus amygdalus L. for dye removal from water'. The Scientific World Journal, vol. 2013, Article ID 961671, pp. 1-8, June 2013.

[71] R. A. K. Rao and S. Ikram, 'Sorption studies of Cu (II) on gooseberry fruit (Emblica officinalis) and its removal from electroplating wastewater'. Desalination, vol. 277, n.° 1-3, pp. 390-398, August 2011.

[72] B. Jeyagowri and R. T. Yamuna. 'Biosorption of Methylene blue from aqueous solutions by modified mesoporous Simarouba glauca seed shell powder'. Global NEST J., vol. 17, n.° 4, pp. 701-715, November 2015

[73] F. Mutongo, O. Kuipa and P. K. Kuipa. 'Removal of Cr(VI) from aqueous solutions using powder of potato peelings as a low cost sorbent'. Bioinorg Chem Appl, vol. 2014, Article ID 973153, pp. 1-7, June 2014.

[74] C. Sirilamduan, C. Umpuch and P. Kaewsarn. 'Removal of copper from aqueous solutions by adsorption using modify Zalacca edulis peel modify. Songklanakarin J Sci Technol, vol. 33, n.° 6, pp. 725-732, Nov-Dec. 2011

[75] D. Zhou, L. Zhang, J. Zhou and S. Guo. 'Development of a fixed-bed column with cellulose/ chitin beads to remove heavy-metal ions'. J Appl Polym Sci, vol. 94, n.° 2, pp. 684-691, Aug 2004.

[76] L. Giraldo, M. Bastidas-Barranco and J. C. Moreno-Pirajan. 'Preparation of carbon monoliths from orange peel for NOx retention'. Orient J Chem., vol. 30, pp. 1517-1528, 2014.

[77] G. K. Gupta, S. De, A. Franco, A. M. Balu and R. Luque. 'Sustainable biomaterials: Current trends, challenges and applications'. Molecules, vol. 21, n.° 48, pp. 1-11, January 2016.
Author Biographies

Maria Guadalupe Valladares-Cisneros, Facultad de Ciencias Químicas e Ingeniería. Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, Cuernavaca Mor. C.P. 62209, México. Tel/Fax. 777-329- 70-00, Ext 3746

Ha realizado investigación experimental orientada al estudio, evaluación y aplicación de Productos Naturales de origen vegetal en Ciencias e Ingeniería. Las investigaciones que ha realizado con su grupo de trabajo, en productos naturales, han sido como:

  1. Inhibidores Naturales de la Corrosión de Materiales Metálicos
  2. Pesticidas Botánicos y Fitoinsecticidas contra especies de Interés Agrícola
  3. Nematicidas Botánicos, para generar alternativas amigables de control en salud animal
  4. Adsorbentes naturales como generación de nuevos biomateriales aplicables la remoción de contaminantes en agua
  5. Diversas actividades farmacológicas como Antimicrobianas, Antiinflamatorias, Antioxidantes, Anti-ulcerantes, Tóxicas y Citotóxicas, etc.

El desarrollo de éstas investigación a contribuido a la formación recursos humanos a nivel Posgrado (Maestría y Doctorado) y Licenciatura. Los resultados se han difundido en diferentes foros académicos como coloquios, simposios y congresos. Permitiendo la preparación de artículos de investigación y publicándose en revistas internacionales y nacionales.

Su investigación actual se orienta a la generación de alternativas naturales y ecológicas con potencial aplicación y desarrollo para una ingeniería ambiental y sustentable. 

Cintya Valerio Cárdenas, División de Ciencias Básicas e Ingeniería. Universidad Popular de la Chontalpa.

Ingeniera Química. División de Ciencias Básicas e Ingeniería. Universidad Popular de la Chontalpa. Carretera Cárdenas-Huimanguillo km 2. R / a. Paso y playa s / n. H. Cárdenas, Tabasco, México. cintyavaca@gmail.com

Patricia de la Cruz Burelo, Universidad Popular de la Chontalpa

PhD. Maestría en Química Sustentable. Universidad Popular de la Chontalpa. Carretera Cárdenas-Huimanguillo km 2. R/a. Paso y playa s/n. H. Cárdenas, Tabasco, México. patyburelo@hotmail.com

Rosa María Melgoza Alemán, Facultad de Ciencias Químicas e Ingeniería. Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, Cuernavaca Mor. C.P. 62209, México.

Ph.D. Facultad de Ciencias Químicas e Ingeniería. Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Mor. C. P. 62209, México. rmelgoza@uaem.mx