Passivity-Based Control with an Adaptive Strategy of an Energetic Storage System for a DC Nano Grid

Johan Sebastian Sanchez-Choachi | Bio
Universidad Distrital Francisco Jose de Caldas

Abstract

The growing interest in the development of micro-grids has led to a large number of research projects, in order to improve their performance for further industrialization. For this reason, this paper presents the modeling, control design and simulation results of an energy storage system for a DC nano-grid. This device allows storing energy in the batteries or extract it from them, depending on the load and state of the nano-grid sources. This equipment is built from a nonisolated DC-DC bidirectional converter, for which its model and control strategy based on passivity, accompanied by an adaptive mechanism that estimates some parameters of the system are developed. The simulation results are presented, highlighting the fast response of the system, its robustness facing disturbances and its contribution to the regulation of the DC bus voltage of the nano-grid.

References

  1. [1] Sistema de información eléctrico colombiano (SIEL), Registro de proyectos de generación (Inscripción según requisitos de las Resoluciones UPME No. 0520 y No. 0638 de 2007), Unidad de Planeación Minero Energética (UPME), [En línea], Disponible: http://www.siel.gov.co/Generacion_sz/Inscripcion/2016/Registro_Proyectos_Generacion_Feb2016.pdf, 2007.

  2. [2] M. Quintero Quintero, “Dependencia hidrológica y regulatoria en la formación de precio de la energía en un sistema hidrodominado: caso sistema eléctrico colombiano,” Revistas ingeniería, Universidad de Medellín, vol. 12, n.º 22, pp. 85-96, 2013. DOI: https://doi.org/10.22395/rium.v12n22a7

  3. [3] A. Cserép et al., “A nanogrid Concept for Supplying ICT Devices to Improve the Energy Efficiency of Small Offices,” presentado en IEEE Second International Conference on DC Microgrids (ICDCM), Nuremberg, 2017. DOI: https://doi.org/10.1109/ICDCM.2017.8001082

  4. [4] C. Cecati et al., “DC nanogrid for renewable sources with modular DC/DC LLC converter building block,” IET Power Electronics, vol. 10, n.º 5, pp. 536-544, 2017. DOI: https://doi.org/10.1049/iet-pel.2016.0200

  5. [5] S. Ilango Ganesan et al., “Control Scheme for a Bidirectional Converter in a Self-Sustaining Low-Voltage DC Nanogrid,” IEEE Transactions on Industrial Electronics, vol. 62, n.º 10, pp. 6327-6326, 2015. DOI: https://doi.org/10.1109/TIE.2015.2424192

  6. [6] D. D. Campo Ossa et al., “Análisis y simulación de un rectificador trifásico controlado Active Front End (AFE),” Revistas ingeniería, Universidad de Medellín, vol. 14, n.º 27, pp. 257-272, 2015. DOI: https://doi.org/10.22395/rium.v14n27a15

  7. [7] S. Ahmad Hamidi y A. Nasiri, “Stability analysis of a DC-DC converter for battery energy storage system feeding CPL,” presentado en IEEE International Telecommunications Energy Conference (Intelec), Osaka, 2015. DOI: https://doi.org/10.1109/INTLEC.2015.7572343

  8. [8] S. Oucheriah y L. Guo, “PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters” IEEE Transactions on Industrial Electronics, vol. 60, n.º 8, pp. 3291-3294, 2013. DOI: https://doi.org/10.1109/TIE.2012.2203769

  9. [9] A. Morici y Z. Tariq, “Fuzzy Logic based Adaptive Controller for AC/DC Boost Converters” presentado en International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Alemania, 2018.

  10. [10] B. Wang, Y. Yuan, Y. Zhou y X. SunMotion, “Buck/Boost Bidirectional Converter TCM Control Without Zero-crossing Detection” presentado en IEEE 8th International Power Electronics and Motion Control Conference (Ipemc-ECCE Asia), Hefei., 2016. DOI: https://doi.org/10.1109/IPEMC.2016.7512786

  11. [11] O. Montoya, A. Garcés, I.Ortega y G. Espinosa, “Passivity-Based Control for Battery Charging/Discharging Applications by Using a Buck-Boost DC-DC Converter” presentado en IEEE Green Technologies Conference (GreenTech), Austin, Tx., 2018. DOI: https://doi.org/10.1109/GreenTech.2018.00025

  12. [12] M. Mojallizadeh y M. Badamchizadeh, “Adaptive Passivity-Based Control of a Photovoltaic/Battery Hybrid Power Source via Algebraic Parameter Identification”, IEEE Journal of Photovoltaics, vol. 6, n.º 2, pp. 532-539, 2016. DOI: https://doi.org/10.1109/JPHOTOV.2016.2514715

  13. [13] D. Freitas, A. Lima y M. Morais, “Determining Lead-Acid Battery DC Resistance by Tremblay Battery Model” presentado en 7th International Renewable Energy Congress (IREC), Hammamet, 2016. DOI: https://doi.org/10.1109/IREC.2016.7478944

  14. [14] E. Abdulhamitbilal, “SoC Estimation for Lithium-Ion Batteries in Automotive Systems: Sliding Mode Observation” presentado en 14th International Workshop on Variable Structure Systems (VSS), Nanjing, 2016. DOI: https://doi.org/10.1109/VSS.2016.7506936

How to Cite
Sanchez-Choachi, J. S. (2019). Passivity-Based Control with an Adaptive Strategy of an Energetic Storage System for a DC Nano Grid. Revista Ingenierías Universidad De Medellín, 18(35), 185-203. https://doi.org/10.22395/rium.v18n35a11

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in