State of the Art: Desalination Using Membrane Technologies as an Alternative for the Problem of Fresh Water Shortage

Main Article Content

Maria Camila Grueso-Dominguez
Camilo Cesar Castro-Jiménez
Mauricio Andres Correa-Ochoa
Julio Cesar Saldarriaga-Molina

Abstract

Considering the scarce availability of fresh water, the accelerated growth of population and the contamination of water resources, it is necessary to look for alternatives to take advantage of the brackish resources and water from the oceans. Numerous investigations in the field of desalination processes –emphasizing in the separation by membranes–, have allowed the potabilization of sea water in economically viable conditions and without major problems. The objective of this article is to compile the main advances worldwide regarding desalination processes. As a result of the analysis of the scientific evidence found, some future challenges are highlighted, which include: use of renewable energy sources in the processes, reduction in the use of chemical products; use of innovative materials for membranes, the search for more effective and profitable pretreatment solutions, and reduction of the total cost of water for the consumer.


How to Cite
Grueso-Dominguez, M. C., Castro-Jiménez, C. C., Correa-Ochoa, M. A., & Saldarriaga-Molina, J. C. (2019). State of the Art: Desalination Using Membrane Technologies as an Alternative for the Problem of Fresh Water Shortage. Revista Ingenierías Universidad De Medellín, 18(35), 69–89. https://doi.org/10.22395/rium.v18n35a5

Article Details

References

[1] G. E. Dévora-Isiordia, R. González-Enríquez y S. Ruiz-Cruz, 'Evaluación de procesos de desalinización y su desarrollo en México,' Tecnol. y ciencias del agua, vol. 4, n.° 3, pp. 27-46, 2013.

[2] K. Wong y C. Pecora, 'Recommendations for Energy-Water-Food Nexus Problems,' J. Energy Resour. Technol., vol. 137, n.° 3, pp. 1-5, 2015. DOI: https://doi.org/10.1115/1.4028139

[3] M. M. Morad, H. A. M. El-maghawry y K. I. Wasfy, 'A developed solar-powered desalination system for enhancing fresh water productivity,' Sol. Energy, vol. 146, pp. 20-29, 2017. DOI: https://doi.org/10.1016/j.solener.2017.02.002

[4] M. Frankel, Facilities Site Piping Systems Handbook. New York: McGraw-Hill Education, 2012.

[5] A. Alkaisi, R. Mossad y A. Sharifian-barforoush, 'A review of the water desalination systems integrated with renewable energy,' Energy Procedia, vol. 110, pp. 268-274, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.03.138

[6] AWWA, Water Treatment Plant Design, 5° ed., New York: The McGraw-Hill Companies, 2012.

[7] D. Mackenzie, Water and Wastewater Engineering: Design Principles and Practice. New York: McGraw-Hill Education, 2010.

[8] L. Weinrich, M. LeChevallier y C. N. Haas, 'Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment,' Water Res., vol. 101, pp. 203-213, 2016. DOI: https://doi.org/10.1016/j.watres.2016.05.075

[9] M. Ben-Sasson, X. Lu, S. Nejati, H. Jaramillo y M. Elimelech, 'In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles,' Desalination, vol. 388, pp. 1-8, 2016. DOI: https://doi.org/10.1016/j.desal.2016.03.005

[10] M. Wakil, M. Burhan, L. Ang, y K. Choon, 'Energy-water-environment nexus underpinning future desalination sustainability,' Desalination, vol. 413, pp. 52-64, 2017. DOI: https://doi.org/10.1016/j.desal.2017.03.009

[11] M. Chandrashekara y A. Yadav, 'Water desalination system using solar heat : A review,' Renew. Sustain. Energy Rev., vol. 67, pp. 1308-1330, 2017. DOI: https://doi.org/10.1016/j.rser.2016.08.058

[12] D. M. Sandoval Corro, 'Procedimientos para el control químico del sistema de tratamiento de la Central Nucleoeléctrica Laguna Verde por ósmosis inversa,' Proyecto final de pregrado, Universidad Veracruzana, Veracruz, México, 2014.

[13] F. Muñoz y L. A. Becerril, 'Low-capacity Reverse Osmosis Solar Desalination Plant,' Energy Procedia, vol. 57, pp. 2787-2793, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.10.311

[14] A. L. Rocha Neves, M. Pereira Alves, C. Feitosa de Lacerda y H. Raj Gheyi, 'Aspectos socioambientais e qualidade da água de dessalinizadores nas comunidades rurais de Pentecoste-CE,' Rev. Ambient. e Agua, vol. 12, n.° 1, pp. 124-135, 2017. DOI: https://doi.org/10.4136/ambi-agua.1722

[15] V. B. Brião et al., 'Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil,' Desalination, vol. 344, pp. 402-411, 2014. DOI: https://doi.org/10.1016/j.desal.2014.04.008

[16] T. D. J. R. López, D. Lafargue Verdecia, O. González Diaz y E. Medina Correa, 'Uso de ósmosis inversa en el hotel Breezes Jibacoa para la desalación de agua de consumo,' Ing. Hidráulica y Ambient., vol. XXXVI, n.° 3, pp. 112-125, 2015.

[17] 'RWL Water awarded SWRO desalination contract in Argentina,' Pump Industry Analyst, vol. 51, p. 4, 2014. DOI: https://doi.org/10.1016/S1359-6128(14)70432-X

[18] L. Greenlee, D. Lawler, B. Freeman, B. Marrot y P. Moulin, 'Reverse osmosis desalination: Water sources, technology, and today’s challenges,' Water Res., vol. 43, pp. 2317-2348, 2009. DOI: https://doi.org/10.1016/j.watres.2009.03.010

[19] M. Molinos y D. González, 'Evaluation of the economics of desalination by integrating greenhouse gas emission costs: An empiric application for Chile,' Renew. Energy, vol. 133, pp. 1327-1337, 2019. DOI: https://doi.org/10.1016/j.renene.2018.09.019

[20] Y. Suescun, D. Álvarez, F. Martínez y E. Jiménez, 'Propuesta para el aseguramiento de la prestación del servicio de acueducto en el municipio de Manaure, departamento de la Guajira,' Proyecto final de especialización, Univ. Católica Colomb., Bogotá, Colombia, 2018.

[21] C. Alarcón, L. Amaya y O. Díaz, 'Análisis comparativo entre acuíferos costeros y plantas desalinizadoras como fuente de suministro para poblaciones con escasez de fuentes hídricas superficiales,' Proyecto final de especialización, Univ. Católica Colomb., Bogotá, Colombia, 2015.

[22] M. E. Coronado, 'Diseño e implementación de una planta prototipo automatizada para la potabilización de aguas por el método de osmosis inversa en Ingeaguas S.A.,' Proyecto final de pregrado, Universidad de Antioquia, Medellín, Colombia, 2013.

[23] H. March, M. Hernández y D. Saurí, 'Percepción de recursos convencionales y no convencionales en áreas sujetas a estrés hídrico: El caso de Alicante,' Rev. Geogr. Norte Gd., vol. 60, pp. 153-172, 2015.

[24] A. Alberti Marti, 'Estudio de la viabilidad técnica y económica de la desalinización de agua de mar mediante unidades autónomas de ósmosis inversa,' Proyecto final de pregrado, Universitat Politecnica De Catalunya, Barcelona, España, 2015.

[25] D. Á. Prats, R. A. García y J. V. Alonso, 'Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras,' Ing. Mecánica, vol. 14, n.° 1, pp. 22-30, 2011.

[26] F. Diogo, A. Santos y M. Azevedo, 'Renewable Energy Powered Desalination Systems: Technologies and Market Analysis,' Tesis de maestría, Universidad de Lisboa, Lisboa, Portugal, 2014.

[27] P. Compain, 'Solar energy for water desalination,' Procedia Eng., vol. 46, n.° 0, pp. 220-227, 2012.

[28] G. Nebbia y G. Nebbia Menozzi, 'Early experiments on water desalination by freezing,' Desalination, vol. 5, pp. 49-54, 1968. DOI: https://doi.org/10.1016/S0011-9164(00)80191-5

[29] S. woo Han, W. Kim, Y. Lee, B. M. Jun, and Y. N. Kwon, 'Investigation of Hydrate-induced Ice Desalination (HIID) and its application to a pretreatment of reverse osmosis (RO) process,' Desalination, vol. 395, pp. 8-16, 2016. DOI: https://doi.org/10.1016/j.desal.2016.05.023

[30] A. Alsheghri, S. A. Sharief, S. Rabbani y N. Z. Aitzhan, 'Design and Cost Analysis of a Solar Photovoltaic Powered Reverse Osmosis Plant for Masdar Institute,' Energy Procedia, vol. 75, pp. 319-324, 2015. DOI: https://doi.org/10.1016/j.egypro.2015.07.365

[31] N. Kishizawa, K. Tsuzuki y M. Hayatsu, 'Low pressure multi-stage RO system developed in ‘ Mega-ton Water System’ for large-scaled SWRO plant,' Desalination, vol. 368, pp. 81-88, 2015.DOI: https://doi.org/10.1016/j.desal.2015.01.045

[32] E. A. Abdel-Aal, M. E. Farid, F. S. M. Hassan y A. E. Mohamed, 'Desalination of Red Sea water using both electrodialysis and reverse osmosis as complementary methods,' Egypt. J. Pet., vol. 24, pp. 71-75, 2015. DOI: https://doi.org/10.1016/j.ejpe.2015.02.007

[33] H. M. Ali, H. Gadallah, S. S. Ali, R. Sabry y A. G. Gadallah, 'Pilot-Scale Investigation of Forward / Reverse Osmosis Hybrid System for Seawater Desalination Using Impaired Water from Steel Industry,' International Journal of Chemical Engineering, 2016. DOI: https://doi.org/10.1155/2016/8745943

[34] D. M. Van Tonder, C. Fourie y J. Maree, 'Development of a solar desalination plant,' South African J. Geol., vol. 119, n.° 1, pp. 39-46, 2016. DOI: https://doi.org/10.2113/gssajg.119.1.39

[35] H. Boulahfa, B. Sakina, F. Elhannouni, T. Mohamed y E. Azzedine, 'Demineralization of brackish surface water by reverse osmosis: The first experience in Morocco,' J. Environ. Chem. Eng., vol. 7, n.° 2, 2019. DOI: https://doi.org/10.1016/j.jece.2019.102937

[36] R. Prakash et al., 'Energy considerations associated with increased adoption of seawater desalination in the United States,' Desalination, vol. 445, pp. 213-224, 2018. DOI: https://doi.org/10.1016/j.desal.2018.08.014

[37] M. Sarai Atab, A. J. Smallbone y A. P. Roskilly, 'An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation,' Desalination, vol. 397, pp. 174-184, 2016. DOI: https://doi.org/10.1016/j.desal.2016.06.020

[38] F. S. Pinto y R. C. Marques, 'Desalination projects economic feasibility : A standardization of cost determinants,' Renew. Sustain. Energy Rev., vol. 78, pp. 904-915, 2017. DOI: https://doi.org/10.1016/j.rser.2017.05.024

[39] E. Lapuente, 'Full cost in desalination . A case study of the Segura River Basin,' DES, vol. 300, pp. 40-45, 2012. DOI: https://doi.org/10.1016/j.desal.2012.06.002

[40] R. Semiat, 'Desalination: present and future,' Int. Water Resour. Assoc. Water Int, vol. 25, pp. 54-65, 2000.

[41] K. V Reddy y N. Ghaffour, 'Overview of the cost of desalinated water and costing methodologies,' Desalination, vol. 205, n.° 1-3, pp. 340-353, 2007. DOI: https://doi.org/10.1016/j.desal.2006.03.558

[42] T. M. Missimer, N. Ghaffour, A. H. A. Dehwah, R. Rachman, R. G. Maliva y G. Amy, 'Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics,' Desalination, vol. 322, pp. 37-51, 2013. DOI: https://doi.org/10.1016/j.desal.2013.04.021

[43] R. Duncan C., Plant Equipment and Maintenance Engineering Handbook. New York: McGraw-Hill Education, 2014.

[44] M. A. Alghoul et al., 'Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system,' Renew. Energy, vol. 93, pp. 101-114, 2016. DOI: https://doi.org/10.1016/j.renene.2016.02.015

[45] T. Suzuki et al., 'Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties,' Water Res., vol. 100, pp. 326-336, 2016. DOI: https://doi.org/10.1016/j.watres.2016.04.068

[46] L. Henthorne y B. Boysen, 'State-of-the-art of reverse osmosis desalination pretreatment,' Desalination, vol. 356, pp. 129-139, 2015. DOI: https://doi.org/10.1016/j.desal.2014.10.039

[47] M. Raulio, R. Juvonen, H. L. Alakomi, J. Ekman, M. Hesampour y T. Lundin, 'Characterisation of (bio)fouling on used reverse osmosis membranes,' Procedia Eng., vol. 44, pp. 931-933, 2012. DOI: https://doi.org/10.1016/j.proeng.2012.08.626

[48] J. N. Hakizimana et al., 'Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis,' Desalination, vol. 393, pp. 90-101, 2016. DOI: https://doi.org/10.1016/j.desal.2015.12.025

[49] V. García Molina et al., 'Estudio de viabilidad y mejora de esquemas integrados de ultrafiltración y ósmosis inversa para la producción de agua potable a partir de agua superficial,' Tecnoaqua, vol. 8, pp. 42-46, 2014.

[50] M. Monnot, H. T. K. Nguyên, S. Laborie y C. Cabassud, 'Seawater reverse osmosis desalination plant at community-scale: Role of an innovative pretreatment on process performances and intensification,' Chem. Eng. Process., vol. 113, pp. 42-55, 2017. DOI: https://doi.org/10.1016/j.cep.2016.09.020

[51] T. Zhou, Z. Wang y W. Li, 'A cost model approach for RO water treatment of power plant,' Procedia Environ. Sci., vol. 11, pp. 581-588, 2011. DOI: https://doi.org/10.1016/j.proenv.2011.12.091

[52] M. U. Siddiqui, A. F. M. Arif y S. Bashmal, 'Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: Effect of pore size and shape distribution and membrane stretching,' Membranes (Basel)., vol. 6, pp. 1-14, 2016. DOI: https://doi.org/10.3390/membranes6030040

[53] S. Manju y N. Sagar, 'Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India,' Renew. Sustain. Energy Rev., vol. 73, pp. 594-609, 2017. DOI: https://doi.org/10.1016/j.rser.2017.01.164

[54] S. G. Kim, J. H. Chun, B. H. Chun y S. H. Kim, 'Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination,' Desalination, vol. 325, pp. 76-83, 2013. DOI: https://doi.org/10.1016/j.desal.2013.06.017

[55] N. L. Le y S. P. Nunes, 'Materials and membrane technologies for water and energy sustainability,' Sustain. Mater. Technol., vol. 7, pp. 1-28, 2016. DOI: https://doi.org/10.1016/j.susmat.2016.02.001

[56] N. C. Martins, 'Estudo de Limpeza Quimica em Membranas de Osmose Inversa,' Proyecto final de pregrado, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brasil, 2012.

[57] C. B. Bonilla Suárez, 'Desmineralización de agua de mar mediante membranas cerámicas modificadas,' Universidad Autónoma de Querétaro, 2011.

[58] V. C. J. Mansouri, S. Harrisson, 'Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities,' J. Mater. Chem., vol. 20, 2010. DOI: https://doi.org/10.1039/B926440J

[59] S. Jiang, Y. Li y B. P. Ladewig, 'A review of reverse osmosis membrane fouling and control strategies,' Sci. Total Environ., vol. 595, pp. 567-583, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.235

[60] S. Lee, O. M., Kim, H. Y. Park, W. Kim y T. H. Yu, 'A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process,' J. Hazard. Mater., vol. 295, 2015. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.016

[61] M. Alizadeh Tabatabai, S. A. Schippers y J. C. Kennedy, 'Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis.,' Water Res., vol. 59, pp. 283-294, 2014. DOI: https://doi.org/10.1016/j.watres.2014.04.001

Author Biographies

Maria Camila Grueso-Dominguez, Universidad de Antioquia

Ingeniera sanitaria, miembro del Grupo de Investigación GIGA, Universidad de Antioquia. Profesora auxiliar, Escuela Ambiental de la Facultad de Ingeniería de la Universidad de Antioquia, Medellín, Colombia. Correo electrónico: maria.grueso@udea.edu.co. Orcid: http://orcid.org/0000-0001-6332-4617

Camilo Cesar Castro-Jiménez, Universidad de Antioquia

Ingeniero sanitario, magíster en Ingeniería Ambiental, miembro del Grupo de Investigación GIGA, Universidad de Antioquia. Profesor, Escuela Ambiental de la Facultad de Ingeniería de la Universidad de Antioquia, Medellín, Colombia. Correo electrónico: camilo.castro@udea.edu.co. Orcid: http://orcid.org/0000-0001-8272-2258

Mauricio Andres Correa-Ochoa, Universidad de Antioquia

Ingeniero sanitario, magíster en Ingeniería Ambiental, miembro del Grupo de Investigación GIGA, Universidad de Antioquia. Profesor asistente, Escuela Ambiental de la Facultad de Ingeniería de la Universidad de Antioquia, Medellín, Colombia. Correo electrónico: mandres.correa@udea.edu.co. Orcid: http://orcid.org/0000-0003-3666-0767

Julio Cesar Saldarriaga-Molina, Universidad de Antioquia

Ingeniero sanitario, magíster en Ingeniería Ambiental, doctor en Ingeniería, miembro del Grupo de Investigación GIGA, Universidad de Antioquia. Profesor, Escuela Ambiental de la Facultad de Ingeniería de la Universidad de Antioquia, Medellín, Colombia.. Correo electrónico: julio.saldarriaga@udea.edu.co. Orcid: http://orcid.org/0000-0002-9395-5417