Degradation of Ethylene Glycol Through Photo-Fenton Heterogeneous System

Main Article Content

Alba Nelly Ardila-Arias
Eliana Berrío-Mesa
Erasmo Arriola-Villaseñor
William Fernando Álvarez-Gómez
José Alfredo Hernández-Maldonado
Trino Armando Zepeda-Partida
Luis Antonio Ortíz-Frade
Rolando Barrera-Zapata

Abstract

This work describes the ethylene glycol degradation in a photo-Fenton heterogeneous system. Iron-doped TiO2 photocatalysts prepared by different methods (incipient wet impregnation and sol-gel method), as well as the corresponding un-doped material were examined in this process. Different values of initial pH and H2O2 concentration were tested during the experiments. A lower photoactivity was observed for the un-doped materials than for the Fe-doped materials. Optimum results of initial pH and H2O2 concentrations were found to be 3.0 and 1,000 mg/L, respectively.  Furthermore, the highest degradation percentage of ethylene glycol (61 %) was achieved for the material synthetized by sol-gel method. Such catalytic performance is explained on the basis of structural/morphological and electronic characterization results, reached by XRD, UV-vis DRS and XPS techniques. To the best of our knowledge, this is the first report related with the ethylene glycol degradation using Iron-doped TiO2 in a photo-Fenton heterogeneous system.


How to Cite
Ardila-Arias, A. N., Berrío-Mesa, E., Arriola-Villaseñor, E., Álvarez-Gómez, W. F., Hernández-Maldonado, J. A., Zepeda-Partida, T. A., … Barrera-Zapata, R. (2019). Degradation of Ethylene Glycol Through Photo-Fenton Heterogeneous System. Revista Ingenierías Universidad De Medellín, 18(35), 91–109. https://doi.org/10.22395/rium.v18n35a6

Article Details

References

[1] A. N. Ardila Arias, E. Arriola Villaseñor, J. Reyes Calle, E. Berrio Mesa, and G. Fuentes Zurita, 'Mineralización de etilenglicol por foto-Fenton asistido con ferrioxalato,' Rev. Int. Contam. Ambient., vol. 32, n.° 2, pp. 213-226, 2016. DOI: http://dx.doi.org/10.20937/RICA.2016.32.02.07

[2] B. D. McGinnis, V. D. Adams, and E. J. Middlebrooks, 'Degradation of ethylene glycol in photo Fenton systems,' Water Res., vol. 34, n.° 8, pp. 2346-2354, 2000. DOI: http://dx.doi.org/10.1016/S0043-1354(99)00387-5

[3] B. Dietrick McGinnis, V. Dean Adams, and E. Joe Middlebrooks, 'Degradation of ethylene glycol using Fenton’s reagent and UV,' Chemosphere, vol. 45, n.° 1, pp. 101-108, 2001. DOI: http://dx.doi.org/10.1016/S0045-6535(00)00597-X

[4] J. Araña, J. A. Ortega Méndez, J. A. Herrera Melián, J. M. Doña Rodríguez, O. González Díaz, and J. Pérez Peña, 'Thermal effect of carboxylic acids in the degradation by photo-Fenton of high concentrations of ethylene glycol,' Appl. Catal. B Environ., vol. 113-114, pp. 107-115, 2012. DOI: http://dx.doi.org/10.1016/j.apcatb.2011.11.025

[5] C. E. Díaz-Uribe, W. A. Vallejo L., and J. Miranda, 'Photo-Fenton oxidation of phenol with Fe(III)-tetra-4- carboxyphenylporphyrin/SiO2 assisted with visible light,' J. Photochem. Photobiol. A Chem., vol. 294, pp. 75-80, 2014. DOI: http://dx.doi.org/10.1016/j.jphotochem.2014.08.004

[6] T. Tachikawa et al., 'Visible Light-Induced Degradation of Ethylene Glycol on Nitrogen-Doped TiO2 Powders,' J. Phys. Chem. B, vol. 110, n.° 26, pp. 13158-13165, 2006. DOI: http://dx.doi.org/10.1021/jp0620217

[7] T. Aguilar et al., 'A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap,' Chem. Phys. Lett., vol. 571, pp. 49-53, 2013. DOI: http://dx.doi.org/10.1016/j.cplett.2013.04.007

[8] D. V. Wellia, Q. C. Xu, M. A. Sk, K. H. Lim, T. M. Lim, and T. T. Y. Tan, 'Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol-gel method,' Appl. Catal. A Gen., vol. 401, n.° 1-2, pp. 98-105, 2011. DOI: http://dx.doi.org/10.1016/j.apcata.2011.05.003

[9] A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, 'Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method,' Results Phys., vol. 7, pp. 3007-3015, 2017. DOI: http://dx.doi.org/10.1016/j.rinp.2017.07.066

[10] Y. Liu et al., 'Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles,' Appl. Surf. Sci., vol. 257, n.° 18, pp. 8121-8126, 2011. DOI: http://dx.doi.org/10.1016/j.apsusc.2011.04.121

[11] C. Yu, Q. Fan, Y. Xie, J. Chen, Q. shu, and J. C. Yu, 'Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol,' J. Hazard. Mater., vol. 237-238, pp. 38-45, 2012. DOI: http://dx.doi.org/10.1016/j.jhazmat.2012.07.072

[12] A. Montesinos-Castellanos and T. A. Zepeda, 'High hydrogenation performance of the mesoporous NiMo/Al(Ti, Zr)-HMS catalysts,' Microporous Mesoporous Mater., vol. 113, n.° 1-3, pp. 146-162, 2008. DOI: http://dx.doi.org/10.1016/j.micromeso.2007.11.012

[13] P. Reyes, H. Rojas, and J. L. G. Fierro, 'Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts,' Appl. Catal. A Gen., vol. 248, no. 1-2, pp. 59-65, 2003. DOI: http://dx.doi.org/10.1016/S0926-860X(03)00148-0

[14] C. Adán, A. Bahamonde, I. Oller, S. Malato, and A. Martínez-Arias, 'Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts,' Appl. Catal. B Environ., vol. 144, n.° 1, pp. 269-276, 2014. DOI: http://dx.doi.org/10.1016/j.apcatb.2013.07.027

[15] S. H. Lin, C. H. Chiou, C. K. Chang, and R. S. Juang, 'Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation,' J. Environ. Manage., vol. 92, n.° 12, pp. 3098-3104, 2011. DOI: http://dx.doi.org/10.1016/j.jenvman.2011.07.024

[16] H. B. Hadjltaief, M. Ben Zina, M. E. Galvez, and P. Da Costa, 'Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay,' Comptes Rendus Chim., vol. 18, n.° 10, pp. 1161-1169, 2015. DOI: http://dx.doi.org/10.1016/j.crci.2015.08.004

[17] E. Martin Del Campo, R. Romero, G. Roa, E. Peralta-Reyes, J. Espino-Valencia, and R. Natividad, 'Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC,' Fuel, vol. 138, pp. 149-155, 2014. DOI: http://dx.doi.org/10.1016/j.fuel.2014.06.014

[18] Z. Shiyun, Z. Xuesong, L. Daotang, and C. Weimin, 'Ozonation of naphthalene sulfonic acids in aqueous solutions: Part II - Relationships of their COD, TOC removal and the frontier orbital energies,' Water Res., vol. 37, n.° 5, pp. 1185-1191, 2003. DOI: http://dx.doi.org/10.1016/S0043-1354(02)00178-1

[19] Z. Shiyun, Z. Xuesong and L. Daotang, 'Ozonation of naphthalene sulfonic acids in aqueous solutions: Part I- Relationships of their COD, TOC removal and the frontier orbital energies,' Water Res., vol. 37, n.° 5, pp. 1237-1243, 2002. DOI: http://dx.doi.org/10.1016/S0043-1354(01)00331-1

[20] L. Türker, T. Atalar, S. GümüÅŸ, and Y. Çamur, 'A DFT study on nitrotriazines,' J. Hazard. Mater., vol. 167, n.° 1-3, pp. 440-448, 2009. DOI: http://dx.doi.org/10.1016/j.jhazmat.2008.12.134

Author Biographies

Alba Nelly Ardila-Arias, Politécnico Colombiano Jaime Isaza Cadavid

PhD. in Engineering. Chemical Engineering. Research Group on Environmental Catalysis and Renewable Energies (Camer). Faculty of Basic, Social and Human Sciences, Politécnico Colombiano Jaime Isaza Cadavid, Colombia. Email: anardila@elpoli.edu.co. Orcid: https://orcid.org/0000-0002-7675-0647

Eliana Berrío-Mesa, Politécnico Colombiano Jaime Isaza Cadavid

Energy Engineering. MSc Chemical Engineering. Research Group on Environmental Catalysis and Renewable Energies (Camer). Faculty of Basic, Social and Human Sciences, Politécnico Colombiano Jaime Isaza Cadavid, Colombia. Email: erasmoarriola@elpoli.edu.co. Orcid: https://orcid.org/0000-0002-1006-7001

Erasmo Arriola-Villaseñor, Politécnico Colombiano Jaime Isaza Cadavid

Environmental Engineer. Technologist in Industrial Chemistry and Laboratory. Research Group on Environmental Catalysis and Renewable Energies (Camer), Faculty of Basic, Social and Human Sciences, Politécnico Colombiano Jaime Isaza Cadavid, Colombia. Email: eliana_berrio27121@elpoli.edu.co. Orcid: https://orcid.org/0000-0002-0165-3834

William Fernando Álvarez-Gómez, Politécnico Colombiano Jaime Isaza Cadavid

Technologist in Industrial Chemistry and Laboratory. Research Group on Environmental Catalysis and Renewable Energies (Camer), Faculty of Basic, Social and Human Sciences, Politécnico Colombiano Jaime Isaza. Email: william_alvarez64141@elpoli.edu.co. Orcid: https://orcid.org/0000-0002-8052-1257

José Alfredo Hernández-Maldonado, Instituto Politécnico Nacional (UPIIG-IPN)

PhD. Chemical Engineering. MSc. Chemistry. Chemical Engineer. Instituto Politecnico Nacional, México. Email: jahernandezma@ipn.mx Orcid: https://orcid.org/0000-0002-0584-3715.

Trino Armando Zepeda-Partida, Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México CNyN-UNAM

Chemical Engineer. PhD and MSc Chemical Engineering. Centro de Nanociencias y nanotecnología, Universidad Nacional Autonoma de México, México. Email: trino@cnyn.unam.mx. Orcid: https://orcid.org/0000-0002-5780-7716

Luis Antonio Ortíz-Frade, Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ)

PhD. Center for Research and Technological Development in Electrochemistry, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro, México. Email: lortiz@cideteq.mx. Orcid: https://orcid.org/0000-0001-6523-8018

Rolando Barrera-Zapata, Universidad de Antioquia UdeA

PhD in Engineering. Grupo Ceres Agroindustria & Ingeniería, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia (UdeA) , Colombia. Email: rolando@udea.edu.co. Orcid: http://orcid.org/0000-0002-8718-9242