Evaluation of Clusters based on Systems on a Chip for High-Performance Computing: A Review

  • Melissa Johanna Aldana Universidad de Quindío
  • Jaime Alberto Buitrago Universidad del Quindío
  • Julián Esteban Gutiérrez Universidad del Quindío
Keywords: Systems on a chip, high-performance computing, clusters, benchmarks


High-performance computing systems are the maximum expression in the field of processing for large amounts of data. However, their energy consumption is an aspect of great importance, which was not considered decades ago. Hence, software developers and hardware providers are obligated to approach new challenges to address energy consumption, and costs. Constructing a computational cluster with a large amount of systems on a chip can result in a powerful, ecologic platform, with the capacity to offer sufficient performance for different applications, as long as low costs and minimum energy consumption can be maintained. As a result, energy efficient hardware has an opportunity to impact upon the area of high-performance computing. This article presents a systematic review of the evaluations conducted on clusters of  ystems on a Chip for High-Performance computing in the research setting.

  • References

    [1] Schadt, E., Linderman, M., Sorenson, J. et al. “Computational solutions to large-scale data management and analysis,” Nat Rev Genet, no. 11, pp. 647–657, 2010. DOI: https://doi.org/10.1038/nrg2857

    [2] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramírez, “Tibidabo: Making the case for an ARM-based HPC system,” Future Generation Computer Systems, no. 36, pp.322–334, 2014. DOI: https://doi.org/10.1016/j.future.2013.07.013

    [3] N. Balakrishnan, Building and benchmarking a low power ARM cluster, M.S. Thesis, EPCC Edinburgh Parallel Computing Center, The University of Edinburgh, 2012. Available: http://static.epcc.ed.ac.uk/dissertations/hpc-msc/2011-2012/Submission-1126390.pdf

    [4] J. W. Weloli, S. Bilavarn, S. Derradji, C. Belleudy and S. Lesmanne, “Efficiency Modeling and Analysis of 64-bit ARM Clusters for HPC,” 2016 Euromicro Conference on Digital System Design (DSD), Limassol, pp. 342-347, 2016. DOI: https://doi.org/10.1109/DSD.2016.74

    [5] M. Görtz, R. Kühn, O. Zietek, R. Bernhard, M. Bulinski, D. Duman, B. Freisen, U. Jentsch, T. Klöppner, D. Popovic, and L. Xu, “Energy Efficiency of a Low Power Hardware Cluster for High Performance Computing,” Eibl,M. & Gaedke, M. (Hrsg.), INFORMATIK 2017. Gesellschaft für Informatik, Bonn, pp. 2537-2548, 2017. DOI: https://doi.org/10.18420/in2017_256

    [6] J. Saffran et al., “A Low-Cost Energy-Efficient Raspberry Pi Cluster for Data Mining Algorithms,” in Desprez F. et al. (eds) Euro-Par 2016: Parallel Processing Workshops. Euro-Par 2016. Lecture Notes in Computer Science, vol 10104. Springer, Cham. 2017. DOI:https://doi.org/10.1007/978-3-319-58943-5_63

    [7] M. Cloutier, C. Paradis, and V. Weaver, “A Raspberry Pi Cluster Instrumented for Fine-Grained Power Measurement,” Electronics, vol. 5, no. 4, p. 61, 2016. DOI: https://doi.org/10.3390/electronics5040061

    [8] L. Morganti, D. Cesini, and A. Ferraro, “Evaluating Systems on Chip through HPC Bioinformatic and Astrophysic Applications,” in 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), Heraklion, pp. 541-544, 2016. DOI: https://doi.org/10.1109/PDP.2016.82

    [9] J. Maqbool, S. Oh, and G. C. Fox, “Evaluating ARM HPC clusters for scientific workloads,”Concurrency Computation, vol. 27, no. 17, pp. 5390–5410, 2015. DOI: https://doi.org/10.1002/cpe.3602

    [10] R. Manchado Garabito, S. Tamames Gómez, M. López González, L. Mohedano Macías, M. D’Agostino, and J. Veiga de Cabo, “Revisiones Sistemáticas Exploratorias,” Medicina y Seguridad del Trabajo, vol. 55, no. 215, pp. 28–51, 2009.

    [11] G. Urrútia, and X. Bonfill, “Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis,” Med. Clin. (Barc), vol. 135, no. 11, pp. 507–511, 2010. DOI: https://doi.org/10.1016/j.medcli.2010.01.015

    [12] C. Kaewkasi, and W. Srisuruk, “A study of big data processing constraints on a low-power Hadoop cluster,” 2014 International Computer Science and Engineering Conference (ICSEC), Khon Kaen, pp. 267-272, 2014. DOI: https://doi.org/10.1109/ICSEC.2014.6978206

    [13] E. L. Padoin, D, P. Velho, and P. O. A. Navaux, “Evaluating Performance and Energy on ARM-based Clusters for High Performance Computing,” in 41st International Conference on Parallel Processing Workshops, Pittsburgh, 2012. DOI: https://doi.org/10.1109/ICPPW.2012.21

    [14] A. Selinger, K. Rupp, and S. Selberherr, “Evaluation of Mobile ARM-Based SoCs for High Performance Computing,” in Proceedings of the 24th High Performance Computing Symposium (HPC ’16). Society for Computer Simulation International, pp. 1–7, 2016. DOI: https://doi.org/10.22360/SpringSim.2016.HPC.022

    [15] C. Salazar, “Medidas de rendimiento y comparación entre el Clúster Cruz I y el Clúster Cruz II,” Revista de la Facultad de Ciencias de la UNI, Revciuni, vol. 17, no. 1, pp. 9–16, 2014.

    [16] C. Kaewkasi and W. Srisuruk, “Optimizing performance and power consumption for an ARM-based big data cluster,”TENCON 2014 - IEEE Region 10 Conference, Bangkok, pp. 1-6, 2014. DOI: https://doi.org/10.1109/TENCON.2014.7022399

    [18] I. Stamelos, D. Soudris, and C. Kachris, “Performance and energy evaluation of spark applications on low-power SoCs,”in 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), Agios Konstantinos, pp. 300-305, 2016. DOI: https://doi.org/10.1109/SAMOS.2016.7818362

    [19] A. Mappuji, N. Effendy, M. Mustaghfirin, F. Sondok, R. P. Yuniar and S. P. Pangesti, “Study of Raspberry Pi 2 quad-core Cortex-A7 CPU cluster as a mini supercomputer,” in 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, 2016, pp. 1-4, 2016. DOI: https://doi.org/10.1109/ICITEED.2016.7863250

    [20] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez and M. Valero, “Supercomputing with commodity CPUs: Are mobile SoCs ready for HPC?,” in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1-12, 2013. DOI: https://doi.org/10.1145/2503210.2503281

    [21] J. Zhang, S. You and L. Gruenwald, “Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation,” in IEEE 35th International Conference on Distributed Computing Systems Workshops, pp. 142-147, 2015. DOI: https://doi.org/10.1109/ICDCSW.2015.33

    [22] Z. Krpić, G. Horvat, D. Žagar and G. Martinović, “Towards an energy efficient SoC computing cluster,” 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, pp. 178-182, 2014. DOI: https://doi.org/10.1109/MIPRO.2014.6859556

    [23] L. O. Salvador, Building a low consumption cluster using SBC technology, B.Sc. Thesis, Ingeniería Informática, Universidad de Cantabria, 2016. Available: http://hdl.handle.net/10902/9383

    [24] M. Tsuji, W. T. C. Kramer and M. Sato, “A Performance Projection of Mini-Applications onto Benchmarks Toward the Performance Projection of Real-Applications,” 2017 IEEE International Conference on Cluster Computing (Cluster), Honolulu, HI, pp. 826-833, 2017. DOI: https://doi.org/10.1109/CLUSTER.2017.123

    [25] M. Sayeed, H. Bae, Y. Zheng, B. Armstrong, R. Eigenmann and F. Saied, “Measuring High-Performance Computing with Real Applications,” Computing in Science & Engineering, vol. 10, no. 4, pp. 60-70, 2008. DOI: https://doi.org/10.1109/MCSE.2008.98

    [26] A. Remy. Solving dense linear systems on accelerated multicore architectures, PhD thesis, Hardware Architecture, Université Paris Sud - Paris XI, 2015. Available: https://tel.archivesouvertes.fr/tel-01225745/document

    [27] Top 500.org, “Top 500 The list,” 2018. [Online]. Available: https://www.top500.org/ [Accessed: 28-Jan-2018].

  • Author Biographies

    Melissa Johanna Aldana, Universidad de Quindío

    Ingeniero de Sistemas y Computación (2003),

    Profesora Universidad del Quindío

    Jaime Alberto Buitrago, Universidad del Quindío

    PhD en Ingeniería, Ingeniero Electrónico, Profesor Asistente Programa de Ingeniería Electrónica, Grupo de Investigación SINFOCI

    Julián Esteban Gutiérrez, Universidad del Quindío

    PhD en Ciencias de la Computación, Ingeniero de Sistemas, Profesor Titular Programa de Ingeniería de Sistemas y Computación, Grupo de Investigación GRID Universidad del Quindío

How to Cite
Aldana, M. J., Buitrago, J. A., & Gutiérrez, J. E. (2019). Evaluation of Clusters based on Systems on a Chip for High-Performance Computing: A Review. Revista Ingenierías Universidad De Medellín, 19(37), 75-92. https://doi.org/10.22395/rium.v19n37a4


Download data is not yet available.