Estimation of Carbon Capture in an Urban Forest Relict through Teledetection Techniques

  • Claudia Marcela Cardona Lindo Universidad del Quindío
  • Julián Garzón Barrero Universidad del Quindío
  • Gonzalo Jiménez Cleves Universidad del Quindío
Keywords: Carbon caption, remote sensing, allometric equation, vegetation indices, biophysical variables, OBIA


The objective of this study is to calculate the capacity of CO2 capture from the forest relict of the University of  uindio “Jardín Botánico Cedro Rosado” through the use of techniques that integrate in situ measurements with remote sensing. In the first phase, multispectral images, Normalized Differential Vegetation Index (NDVI), Improved Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and object-based classification will be obtained. In the second phase, tree variables will be measured, and Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (Fapar) biophysical variables will be estimated with the Tracing Radiation and Architecture of Canopies (TRAC) optical instrument, in order to correlate them with the vegetation indexes. This will define the constants of the exponential regression model defining the local allometric equation, which will interpolate the biomass in the entire image. 

  • References

    [1] A. Vásquez y H. Arellano, “Estructura, Biomasa aérea y carbono almacenado en los bosques del Sur y Noroccidente de Córdoba”, en Colombia Diversidad Biótica XII: La Región Caribe de Colombia, Bogotá: Universidad Nacional de Colombia, 2012, pp. 923-962.

    [2] T. Y. Simegn, T. Soromessa y E. Bayable, “Forest Carbon Stocks in Lowland Area of Simien Mountains National Park: Implication for Climate Change Mitigation”, Science, Technology and Arts Research Journal, vol. 3, n.° 3, pp. 29-36, 2014. DOI:

    [3] P. Vicharnakorn, R. P. Shrestha, M. Nagai, A. P. Salam y S. Kiratiprayoon, “Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR”, Remote Sensing, vol. 6, n.° 6, pp. 5452-479, 2014. DOI:

    [4] S. M. Raciti, L. R. Hutyra y J. D. D. Newell, “Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods”, Science of the Total Environment, vol. 1, pp. 72-83, 2014. DOI:

    [5] F. Maselli, F. P. Vaccari, M. Chiesi, S. Romanelli y L. P. D’Acqui, “Modelling and analyzing the water and carbon dynamics of Mediterranean macchia by the use of ground and remote sensing data”, Ecological Modelling, vol. 351, pp. 1-13, 2017. DOI:

    [6] IPCC, “Forest Land”, Guidelines for National Greenhouse Gas Inventories, vol. 4, 2006.

    [7] D. Lu, “The Potential and Challenge of Remote Sensing‐based Biomass Estimation”, International Journal of Remote Sensing, vol. 27, n.° 7, pp. 1297-1328, 2006. DOI:

    [8] G. Galindo García, E. Cabrera Montenegro, D. M. Vargas Galvis, H. R. Pabón Méndez, K. R. Cabrera Torres, A. P. Yepes Quintero, J. F. Phillips Bernal, D. A. Navarrete Encinales, Á. J. Duque Montoya, M. C. García Dávila y M. F. Ordóñez Castro, Estimación de la biomasa aérea usando datos de campo e información de sensores remotos, Bogotá: Ideam, 2011.

    [9] M. Segura, M. Kanninen y D. Suárez, “Allometric Models for Estimating Aboveground Biomass of Shade Trees and Coffee Bushes Grown Together”, Agroforestry Systems, vol. 68, n.º 2, pp. 143-150, 2006. DOI:

    [10] J. Chave, C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, H. N., T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riéra y T. Yamakura, “Tree allometry and improved estimation of carbon stocks and balance in tropical forests”, Oecologia, vol. 145, pp. 87-99, 2005. DOI:

    [11] A. Valerio, M. Herold, H. Matieu y C. Schmullius, “Mapping Biomass with Remote Sensing: A Comparison of Methods for the Case Study of Uganda”, Carbon Balance and Management, vol. 6, n.° 1, p. 7, 2011. DOI:

    [12] S. K. von Bueren, A. Burkart, A. Hueni, U. Rascher, M. P. Tuohy y I. J. Yule, “Deploying four optical UAV-based sensors over grassland: challenges and limitations”, Biogeosciences, vol. 12, pp. 163-175, 2015. DOI:

    [13] N. Yastikli, I. Bagci y C. Beser, “The Processing of Image Data Collected by Light UAV Systems for GIS Data Capture and Updating”, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-7/W2 (noviembre), pp. 267-70, 2013. DOI:

    [14] J. Torres-Sánchez, F. López-Granados, A. I. De Castro y J. M. Peña-Barragán, “Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management”, PLoS ONE, vol. 8, n.° 3, p. e5821, 2013. DOI:

    [15] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni y D. Sarazzi, “Uav Photogrammetry for Mapping and 3D Modeling – Current Status and Future Perspectives”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(1/C22), pp. 25-31, 2011. DOI:

    [16] J. P. Dandois y E. C. Ellis, “High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision”, Remote Sensing of Environment, vol. 136, pp. 259-276, 2013. DOI:

    [17] C. Song y C. E. Woodcock, “Monitoring forest succession with multitemporal Landsat images: factors of uncertainty”, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, n.° 11, pp. 2557-2567, 2003. DOI:

    [18] E. Honkavaara, R. Arbiol, L. Markelin, L. Martinez, M. Cramer, S. Bovet, L. Chandelier, R. Ilves, S. Klonus, P. Marshal, D. Schläpfer, M. Tabor, C. Thom y N. Veje, “Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images”, Remote Sensing, vol. 1, n.° 3, pp. 577-605, 2009.

    [19] A. Agapiou, D. G. Hadjimitsis, C. Papoutsa, D. D. Alexakis y G. Papadavid, “The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos Sites in Cyprus.”, Remote Sensing, vol. 3, n.° 12, pp. 2605-2629, 2011. DOI:

    [20] M. A. Homem Antunes, J. M. Gleriani y P. Debiasi, “Atmospheric Effects on Vegetation Indices of Tm and Etm + Images From a Tropical Region Using the 6S Model”, IEEE International Geoscience and Remote Sensing Symposium, pp. 6549-6552, 2012. DOI:

    [21] M.-L. Smith, J. Anderson y M. Fladeland, “Forest canopy structural properties Chapter 14”, en Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, Coeli M. Hoover, Ed., Nueva York: Springer Science, Business Media, 2008, pp. 179-196.

    [22] P. V. Bolstad y S. T. Gower, “Estimation of Leaf Area Index in Fourteen Southern Wisconsin Forest Stands Using a Portable Radiometer”, Tree Physiology, vol. 7, pp. 115-124, 1990. DOI:

    [23] M. Sprintsin, S. Cohen, K. Maseyk, E. Rotemberg, J. Grünzweig, A. Karnieli, P. Berliner y D. Yakir, “Long term and seasonal courses of leaf area index in a semi-arid forest plantation”, Agricultural and Forest Meteorology, vol. 151, pp. 565-574, 2011. DOI:

    [24] J. M. Chen y J. Cihlar, “Plant Canopy Gap-Size Analysis Theory for Improving Optical Measurements of Leaf-Area Index”, Applied Optics, vol. 32, n.° 27, p. 6211, 1995. DOI:

    [25] L. R. Holdridge, Ecología basada en zonas de vida,Costa Rica: Agroamérica, 1987.

    [26] J. Acevedo, S. Acosta Arrubla, S. Aranzales, R. d. M. Bedoya, M. J. García, O. A. Jojoa, A. Osorio y S. Vázquez, Plan de Manejo Ambiental para el Jardín Botanico de la Universidad del Quindío, Armenia: 2014.

    [27] O. E. Peláez Martínez, Análisis de la respuesta espectral de las coberturas vegetales de los ecosistemas de páramos y humedales a partir de los sensores aerotransportados Utracam D, DJI Phantom 3 Pro y MAPIR NIR. Caso de estudio Humedal “El Ocho”, Villamaría - Caldas, tesis de maestría, Universidad Católica de Manizales, 2017.

    [28] N. Sánchez Martín, B. Arias Pérez, D. González Aguilera y J. Gómez Lahoz, “Análisis aplicado de métodos de calibración de cámaras para usos fotogramétricos”, en VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004, 2004.

    [29] Mapir, Camera Reflectance Calibration Ground Target Package, San Diego: Mapir, 2017, pp. 1-2.

    [30] J. Tian, L. Wang, X. Li, H. Gong, C. Shi, R. Zhong y X. Liu, “Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest”, International Journal of Applied Earth Observation and Geoinformation, n.° 61, pp. 22-31, 2017. DOI:

    [31] C. A. Rokhmana, “The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia”, Procedia Environmental Sciences, n.° 24, pp. 245-253, 2015. DOI:

    [32] A. Lisita, E. E. Sano y L. Durieux, “Identifying potential areas of Cannabis sativa plantations using object-based image analysis of SPOT-5 satellite data”, International Journal of Remote Sensing, vol. 34, n.° 15, pp. 5409-28, 2013. DOI:

    [33] A. E. Zanne, G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann y J. Chave, “Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository”, 2009. [en línea]. Disponible en

    [34] Ideam, Protocolo para la estimación nacional y subnacional de Biomasa - Carbono en Colombia, Bogotá: 2011.

    [35] J. M. Chen y T. A. Black, “Defining Leaf Area Index for Non-Flat Leaves”, Plan, Cell and Environment, vol. 15, n.° 4, pp. 421-429, 1992. DOI:

    [36] GCOS, “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC”, World Meteorologica Organization GCOS, vol. 138, 2010.

    [37] LI-COR (2010, sept.). “LI-COR” [en línea]. Disponible en

    [38] J. W. Chason, D. D. Bladocchi y M. A. Huston, “A Comparison of Direct and Indirect Methods for Estimating Forest Canopy Leaf Area”, Agricultural and Forest Meteorology, vol. 57, n.° 1-3, pp. 107-128, 1991. DOI:

    [39] J. O. Escalante Torrado, J. J. Cáceres Jiménez y H. Porras Díaz, “Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV”, Revista Tecnura, vol. 20, n.° 50, pp. 119-140, 2016.

  • Author Biographies

    Claudia Marcela Cardona Lindo, Universidad del Quindío

    Magíster en Ingeniería de Recursos Hídricos y Medio Ambiente (Universidad del Quindío), especialista en
    gestión ambiental, y química. Coordinadora del Sistema de Gestión Ambiental de la Universidad del Quindío,
    e investigadora del Grupo Geoide G62

    Julián Garzón Barrero, Universidad del Quindío

    Estudiante de Doctorado en Ingeniería Geomática, Universidad Politécnica de Madrid. Magíster en sistemas de
    información geográfica. Especialista en geomática. Profesor del Programa de Ingeniería Topográfica y Geomática e investigador del Grupo Geoide G62, Universidad del Quindío

    Gonzalo Jiménez Cleves, Universidad del Quindío

    Magíster en ingeniería de sistemas. Profesor del Programa de Ingeniería Topográfica y Geomática y líder del
    grupo de investigación Geoide G62, Universidad del Quindío.

How to Cite
Cardona Lindo, C. M., Garzón Barrero, J., & Jiménez Cleves, G. (2019). Estimation of Carbon Capture in an Urban Forest Relict through Teledetection Techniques. Revista Ingenierías Universidad De Medellín, 19(37), 13-34.


Download data is not yet available.