Application of learning analytics and educational data mining in an institution of superior education in Colombia
Main Article Content
Abstract
Nowadays, data is a key element for the continuous improvement of an organization’s decision-taking, achieved through the application of awareness and knowledge processes by undergoing a pre-processing, transformation and analysis over the data. The academic field is aware of this kind of application and
is a trend for the exploitation of data generated by the students, its management and academics dependencies on a daily basis in order to continuously improve the processes.
Current methodologies propose two different guidelines: Learning Analytics (LA), primarily focused on descriptive processes, and Educational Data Mining (EDM) for predictive processes, directing activities adjusted to this environment for obtaining satisfactory results. It is for this reason that this article presents
an application of these two guidelines in a higher education institution, focusing them on sensitive data of the students that will support the high direction decision-taking in these institutions.
Article Details
References
[1] G. Siemens and R. Baker, 'Learning Analytics and Educational Data Mining: Towards Communication and Collaboration', ACM. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, Vancouver, British Columbia, Canada, pp. 252-254, 2012.
[2] L. F. Cote Peña, 'Hábeas Data en Colombia, un trasplante normativo para la protección de la dignidad y su correlación con la NTC/ISO/IEC 27001', Magíster en Derecho, Facultad de Derecho, División de Ciencias Jurídicas y Políticas, Universidad Santo Tomás Seccional Bucaramanga, Bucaramanga, Colombia, 2016.
[3] J. Vásquez Velásquez, E. Castaño Vélez, S. Gallón Gómez, and K. Gómez Portilla, 'Deter-minantes de la desercion estudiantil en la Universidad de Antioquia', Facultad de ciencias econimicas. Centro de investigaciones economicas, Universidad de Antioquia, p. 43, 2003.
[4] U. Fayyad, G. Piatesky-Shapiro, and P. Smyth, Advances in knowledge discovery and data mining. Masachussetts: MIT Press, 1996.
[5] U. Fayyad, G. Piatesky-Shapiro, and P. Smyth, 'From data mining to knowledge discovery in databases', IA Magazine, vol. 17, n.° 3, pp. 37-54, 1996.
[6] U. Fayyad, G. Piatesky-Shapiro, and P. Smyth, 'The KDD process for extracting useful knoledge from volumes of data', Communications of the ACM, vol. 39, pp. 27-34, 1996.
[7] P. J. Goldstein and R. N. Katz, 'Academic Analytics: The Uses of Management Information and Technology in Higher Education', ECAR Research Study, vol. 8, 2005.
[8] D. G. Oblinger and J. P. Campbell, 'Academic Analytics', EDUCAUSE White Paper, 2007.
[9] D. Norris, L. Baer, J. Leonard, L. Pugliese, and P. Lefrere, 'Action Analytics: Measuring and Improving Performance That Matters in Higher Education', EDUCAUSE, vol. 43, 2008.
[10] M. Amine Chatti, A. Lea Dyckhoff, U. Schroeder, and H. Thüs, 'A reference model for learning analytics', Int. J. Technology Enhanced Learning, vol. 4, pp. 318-331, 2012.
[11] M. Anoopkumar and R. Zubair, 'A Review on Data Mining Techniques and Factors Used in Educational Data Mining to Predict Student Amelioration', IEEE, pp. 1-12, 2016.
[12] J. H. Orallo, J. R. Quintana, and C. F. Ramirez, Introducción a la mineria de datos. Madrid, España: Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, 2005.
[13] J. A. Salazar Cardona and D. A. Angarita Garcia, 'Evaluación y selección de herramientas de analítica visual para su implementación en una institución de educación superior', IngEAM, vol. 4, pp. 1-20, 2017.