Real-Time Emulator of Wind Turbine with MPPT

Julián Peláez-Restrepo | Bio
InstitutoTecnológico Metropolitano
Jorge Aurelio Herrera-Cuartas | Bio
Director de Programas de Ingeniería Industrial y Maestría en Ingeniería de la Gestión
Daniel Gonzalez-Montoya | Bio
Full Time Ocasional Professor.
Sergio Ignacio Serna-Garces | Bio
Profesor Titular ITM.

Abstract

In this paper, the design and implementation of a wind turbine emulator bank is proposed. The bank takes into account the dynamics of the extraction of effective wind energy. This dynamic is modelled mathematically. The DC motor emulates the rotary movement due to wind energy, generating the angular velocity profiles according to the torque measured by a torque meter on the coupling shaft between the DC motor and the permanent magnet synchronous generator. Additionally, the paper presents a test experiment that consists of a controlled boost converter to which a maximum power extraction algorithm is applied in order to validate the operation of the DC motor-permanent magnet synchronous generator bank.

References

  1. [1] A. J. Chapman, B. C. Mclellan, and T. Tezuka, “Prioritizing mitigation e ff orts considering co-bene fi ts , equity and energy justice : Fossil fuel to renewable energy transition pathways,” Appl. Energy, vol. 219, n.° March, pp. 187-198, 2018.

  2. [2] M. Narayana, K. M. Sunderland, G. Putrus, and M. F. Conlon, “Adaptive linear prediction for optimal control of wind turbines,” Renew. Energy, vol. 113, pp. 895-906, 2017.

  3. [3] J. Yan, Y. Feng, and J. Dong, “Study on dynamic characteristic of wind turbine emulator based on PMSM,” Renew. Energy, vol. 97, pp. 731-736, 2016.

  4. [4] O. Dahhani, A. El-jouni, and I. Boumhidi, “Assessment and control of wind turbine by support vector machines,” Sustain. Energy Technol. Assessments, vol. 27, pp. 167-179, 2018.

  5. [5] A. Bonfiglio, F. Delfino, F. Gonzalez-longatt, and R. Procopio, “Steady-state assessments of PMSGs in wind generating units,” Int. J. Electr. Power Energy Syst., vol. 90, pp. 87-93, 2017.

  6. [6] A. Shafiei, B. M. Dehkordi, A. Kiyoumarsi, and S. Farhangi, “A Control Approach for Small - Scale PMSG - based WECS in the Whole Wind Speed Range,” IEEE Trans. Power Electron., vol. 23, n.° 12, pp. 9117-9130, 2017.

  7. [7] F. Martinez, L. C. Herrero, and S. De Pablo, “Open loop wind turbine emulator,” Renew. Energy, vol. 63, pp. 212-221, 2014.

  8. [8] J. C. Y. Hui, A. Bakhshai, and P. K. Jain, “An Energy Management Scheme with Power Limit Capability and an Adaptive Maximum Power Point Tracking for Small Standalone PMSG Wind Energy Systems,” IEEE Trans. Power Electron., vol. 31, n.° 7, pp. 4861-4875, 2016.

  9. [9] J. F. Ruiz Murcia, J. Serna Cuenca, and H. J. Zapata Lesmes, Atlas de Viento de Colombia, Ideam-UPME., vol. 1, Colombia: Imprenta Nacional de Colombia, 2017.

  10. [10] J. Castelló, J. M. Espí, and R. García-Gil, “Development details and performance assessment of a Wind Turbine Emulator,” Renew. Energy, vol. 86, pp. 848-857, 2016.

  11. [11] F. Chejne, R. Smith, L. F. Rodrı, J. M. Mejı, and I. Dyner, “Simulation of wind energy output at Guajira , Colombia,” Renew. Energy, vol. 31, pp. 383-399, 2006.

  12. [12] E. G. Shehata, “A comparative study of current control schemes for a direct-driven PMSG wind energy generation system,” Electr. Power Syst. Res., vol. 143, pp. 197-205, 2017.

  13. [13] B. Yang et al., “Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine,” Renew. Energy, vol. 119, pp. 577-589, 2018.

  14. [14] M. Rahimi, “Modeling, control and stability analysis of grid connected PMSG based wind turbine assisted with diode rectifier and boost converter,” Int. J. Electr. Power Energy Syst., vol. 93, pp. 84-96, 2017.

  15. [15] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “Integration of an Energy Capacitor System With a Variable-Speed Wind Generator,” IEEE Trans. Energy Convers., vol. 24, n.° 3, pp. 740-749, 2009.

  16. [16] S. S. Dash and B. Nayak, “Control analysis and experimental verification of a practical dc-dc boost converter,” J. Electr. Syst. Inf. Technol., vol. 2, n.° 3, pp. 378-390, 2015.

  17. [17] D. Zammit, C. S. Staines, A. Micallef, M. Apap, and J. Licari, “Incremental Current Based MPPT for a PMSG Micro Wind Turbine in a Grid-Connected DC Microgrid,” in Energy Procedia, vol. 142, pp. 2284-2294, 2017.

  18. [18] F. Alonge, M. Pucci, R. Rabbeni, and G. Vitale, “Dynamic modelling of a quadratic DC / DC single-switch boost converter,” Electr. Power Syst. Res., vol. 152, pp. 130-139, 2017.

  19. [19] J. P. Ram, N. Rajasekar, and M. Miyatake, “Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 73, pp. 1138-1159, 2017.

How to Cite
Peláez-Restrepo, J., Herrera-Cuartas, J. A., Gonzalez-Montoya, D., & Serna-Garces, S. I. (2019). Real-Time Emulator of Wind Turbine with MPPT. Revista Ingenierías Universidad De Medellín, 18(35), 163-183. https://doi.org/10.22395/rium.v18n35a10

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in