Monitoring of Earth's Crust Movements Associated to Earthquakes through GPS Observations in the Gulf of California

Rosendo Romero-Andrade
Universidad Autónoma de Sinaloa México
Manuel Edwiges Trejo-Soto
Universidad Autónoma de Sinaloa
Alonso Alejandro Arellano-Baeza
Universidad de Santiago de Chile
Juan Luis Cabanillas-Zavala
Centro de Sismología y Vulcanología de Occidente


The distribution of the velocities of the Pacific and North American plates and their possible alteration by earthquakes has been studied using the GPS continuous measurements in the lapse from 2010 to 2016. The GPS data were processed with GAMIT/GLOBK to estimate the position and velocity of the continuous stations. Subsequent analysis has shown that the average relative movement between the Pacific and North American plates is consistent with previous studies, estimating 7.33 mm/year for the north component, and -9.50 mm/year for the east component with an absolute value of 500 mm/yr. A possible relationship between sudden changes in velocity associated with coseismic events and a trend indicates that the probability of having an earthquake of magnitude Mw ≥ 5.0 increases with an increase of the relative velocity between plates is presented.


[1] B. Marquez-Azua y C. DeMets, “Deformation of Mexico from continuous GPS from 1993 to 2008”, Geochemistry, Geophys. Geosystems, vol. 10, núm. 2, pp. 1–16, 2009.
[2] F. J. Núñez‐Cornú et al., “The Jalisco Seismic Accelerometric Telemetric Network (RESAJ)”, Seismol. Res. Lett., núm. July, 2018.
[3] J. Alonso-Henar, J. A. Álvarez-Gómez, y J. J. Martínez-Díaz, “Neogene-quaternary evolution from transpressional to transtensional tectonics in Northern Central America controlled by cocos: Caribbean subduction coupling change”, J. Iber. Geol., vol. 43, núm. 3, pp. 519–538, 2017.
[4] R. R. Castro, J. M. Stock, E. Hauksson, y R. W. Clayton, “Source Functions and Path Effects from Earthquakes in the Farallon Transform Fault Region, Gulf of California, Mexico that Occurred on October 2013”, Pure Appl. Geophys., vol. 174, núm. 6, pp. 2239–2256, 2017.
[5] H. E. Rodríguez-Lozoya et al., “Attenuation of Coda Waves in the Central Region of the Gulf of California, México”, Geofísica Int., vol. 56, núm. 2, pp. 137–145, 2017.
[6] Y. Wu et al., “Crustal deformation before the 2008 Wenchuan MS8.0 earthquake studied using {GPS} data”, J. Geodyn., vol. 85, pp. 11–23, 2015.
[7] L. Munguía et al., “Active Crustal Deformation in the Area of San Carlos, Baja California Sur, Mexico as Shown by Data of Local Earthquake Sequences”, Pure Appl. Geophys., vol. 173, núm. 10–11, pp. 3631–3644, 2016.
[8] J. J. Chanes-Martínez, M. González-Escobar, F. Suárez-Vidal, y C. G. Gallardo-Mata, “Structural Geometry of a Sector of the Colorado River Delta, Baja California, Mexico, Based on Seismic Reflections”, Pure Appl. Geophys., vol. 171, núm. 7, pp. 1107–1127, 2014.
[9] E. V. Ol’shanskaya y S. L. Shalimov, “On estimating the seismic energy of tsunamigenic earthquakes from the ionospheric response observed by GPS”, Izv. Phys. Solid Earth, vol. 51, núm. 6, pp. 814–820, 2015.
[10] D. M. Filatov y A. A. Lyubushin, “Erratum to: ‘Assessment of seismic hazard of the Japanese islands based on fractal analysis of GPS time series’”, Izv. Phys. Solid Earth, vol. 53, núm. 5, pp. 803–803, 2017.
[11] X. He et al., “Review of current GPS methodologies for producing accurate time series and their error sources”, J. Geodyn., vol. 106, pp. 12–29, 2017.
[12] C. Plattner et al., “New constraints on relative motion between the Pacific plate and Baja California microplate (Mexico) from GPS measurements”, Geophys. J. Int., vol. 170, núm. 3, pp. 1373–1380, 2007.
[13] C. Plattner, H. Fattahi, R. Malservisi, F. Amelung, A. Verdecchia, y T. H. Dixon, “Earthquake cycle deformation at the Ballenas transform, Gulf of California, Mexico, from InSAR and GPS measurements”, Eur. Sp. Agency, (Special Publ. ESA SP, vol. SP-731, núm. March, 2015.
[14] G. Blewitt y D. Lavalle, “Effect of annual signals on geodetic velocity”, vol. 107, 2002.
[15] M. González-Escobar, C. Aguilar-Campos, F. Suarez-Vidal, y A. Martin-Barajas, “Geometry of the Wagner basin, upper Gulf of California based on seismic reflections”, Int. Geol. Rev., vol. 51, núm. 2, pp. 133–144, 2009.
[16] A. Nagy y M. Stock, “transition the Agua Blanca”, Sierra, vol. 105, núm. 1999, 2000.
[17] C. DeMets, “A reappraisal of seafloor spreading lineations in the Gulf of California: Implications for the transfer of Baja California to the Pacific Plate and estimates of Pacific‐North America Motion”, Geophys. Res. Lett., vol. 22, núm. 24, pp. 3545–3548, 1995.
[18] J. Garate et al., “Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco”, GPS Solut., vol. 19, núm. 2, pp. 287–295, 2015.
[19] J. Dawson, R. Govind, y J. Manning, “Application of the AUSLIG online GPS processing system (AUSPOS) to Antarctica”, Proceeding of Satnav, 2001.
[20] Z. Altamimi, P. Rebischung, L. Métivier, y X. Collilieux, “ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions”, J. Geophys. Res. Solid Earth, vol. 121, núm. 8, pp. 6109–6131, 2016.
How to Cite
Romero-Andrade, R., Trejo-Soto, M. E., Arellano-Baeza, A. A., & Cabanillas-Zavala, J. L. (2020). Monitoring of Earth’s Crust Movements Associated to Earthquakes through GPS Observations in the Gulf of California. Revista Ingenierías Universidad De Medellín, 20(39), 97-114.


Download data is not yet available.

Send mail to Author

Send Cancel

We are indexed in