A Literature Review of Optimal Generation Start-Up Methodologies for Power System Restoration considering Conventional and Non-Conventional Renewable Energy Sources

  • Ricardo Andrés Pardo Universidad de Antioquia
  • Jesus Maria Lopez-Lezama Universidad de Antioquia
Keywords: generation, optimization, optimal sequence, power system, renewable no conventiona, restoring


After a large-scale blackout power system restoration must be accomplished as soon as possible. For this, the generation must be initially restored, then the transmission system, and finally the load pick up must be completed. To obtain a faster restoration process, it is necessary to establish start-up methodologies for generating units that first start those units that provide black start, and then take the starting power to other generation units without this characteristic, by means of a feasible transmission route. This paper presents a review of different methodologies of optimal generation start-up for power system restoration reported in the scientific literature taking into account the integration of non-conventional renewable energy sources. Within this review it is highlighted that heuristic methods, despite of being effective, are not used in real-time operation due to their high computational cost.

  • References

    [1] Y.-L. Yuan-Kang, “Literature Review of Power System Blackouts”, Energy Procedia, vol. 141, pp. 428–431, 2017.

    [2] O. P. Veloza y F. Santamaria, “Analysis of major blackouts from 2003 to 2015 : Classi fi cation of incidents and review of main causes”, Electr. J., vol. 29, núm. 7, pp. 42–49, 2016.

    [3] R. F. Chu y A. T. Holen, “Generation Capability Dispatch for Bulk Power System Restoration ”:, IEEE Trans. Power Syst., vol. 8, núm. 1, pp. 316–325, 1993.

    [4] M. Shahidehpour y M. Eremia, “Chap4-Wind Power Generation”, Handb. Electr. POWER Syst. Dyn. Model. Stab. Control, pp. 173–194, 2013.

    [5] L. Che, M. Khodayar, y M. Shahidehpour, “Only connect: Microgrids for distribution system restoration”, IEEE Power Energy Mag., vol. 12, núm. 1, pp. 70–81, 2014.

    [6] M. Socha, “Metodología técnico-pedagógica para el entrenamiento de operadores en la tarea de restablecimiento de la operación del sistema de potencia”, 2010.

    [7] D. Lindenmeyer, H. W. Dommel, y M. M. Adibi, “Power system restoration - a bibliographical survey”, Int. J. Electr. Power Energy Syst., vol. 23, núm. 3, pp. 219–227, 2001.

    [8] XM, “Despacho de Genración”, 2018. [En línea]. Disponible en: https://www.xm.com.co/Paginas/Generacion/despacho.aspx. [Consultado: 07-oct-2018].

    [9] W. Sun, S. Member, C. Liu, S. Liu, y A. B. S. Resources, “Black Start Capability Assessment in Power System Restoration”, 2011 IEEE Power Energy Soc. Gen. Meet., pp. 1–7, 2011.

    [10] C. Mario y C. Posada, “Modelo de optimización para las plantas térmicas de generación de ciclo combinado en el despacho económico”, Potencia, núm. September, 2009.

    [11] T. A. Ogden Araya, “Métodos De Identificación Y Predicción De Rampas En Sistemas Eléctricos Con Generación Intermitente”, p. 100, 2015.

    [12] A. M. El-zonkoly, “Renewable energy sources for complete optimal power system black-start restoration”, núm. June 2014, pp. 531–539, 2015.

    [13] A. El-Zonkoy, “Electrical Power and Energy Systems Power system single step restoration incorporating cold load pickup aided by distributed generation”, Int. J. Electr. Power Energy Syst., vol. 35, núm. 1, pp. 186–193, 2012.

    [14] V. Quaschning, “Wind Power Systems – Electricity from Thin Air”, en Renewable Energy and Climate Change, 2010, pp. 165–190.

    [15] A. E. M. O. (AEMO), “http://www.climateplus.info/2016/01/04/where-the-wind-blows/”, 2019. .

    [16] G. M. Masters, “The solar resource”, en Renewable and Efficient Electric Power Systems, 2004, pp. 385–443.

    [17] A. J. Stowarzyszenie Elektryków Polskich. y J. Leicht, “Przeglad elektrotechniczny Electrical review”, Przegląd Elektrotechniczny, 2015. [En línea]. Disponible en: http://www.editores-srl.com.ar/revistas/ie/296/electrotecnica_estudio_de_un_sistema_de_distribucion. [Consultado: 12-oct-2018].

    [18] California ISO (CAISO), http://www.caiso.com/market/Pages/ReportsBulletins/DailyRenewablesWatch.aspx”, 2019. .

    [19] J. Sprooten, T. Gunst, C. Mestdag, y O. Bronckart, “Power system restoration with high penetration level of renewable generation - New challenges and strategies”, 2014 Saudi Arab. Smart Grid Conf., pp. 1–8, 2014.

    [20] C. Shen, P. Kaufmann, y M. Braun, “Optimizing the generator start-up sequence after a power system blackout”, IEEE Power Energy Soc. Gen. Meet., vol. 2014–Octob, núm. October, pp. 1–5, 2014.

    [21] C. Shen, P. Kaufmann, C. Hachmann, y M. Braun, “Three-stage power system restoration methodology considering renewable energies”, Int. J. Electr. Power Energy Syst., vol. 94, pp. 287–299, 2018.

    [22] Y. Liu, R. Fan, y V. Terzija, “Power system restoration: a literature review from 2006 to 2016”, J. Mod. Power Syst. Clean Energy, vol. 4, núm. 3, pp. 332–341, 2016.

    [23] T. Nagata, S. Hatakeyama, M. Yasouka, y H. Sasaki, “An efficient method for power distribution system restoration based on mathematical programming and operation strategy”, Power Syst. Technol. 2000. Proceedings. PowerCon 2000. Int. Conf., vol. 3, pp. 1545–1550 vol.3, 2000.

    [24] R. Urrea y J. Gomez, “Modelo Experto Para Apoyo En Restablecimiento De Sistemas De Potencia”, XIII Eriac, Cigre, 2009.

    [25] T. Sudhakar, “Heuristic based strategy for the restoration problem in electric power distribution systems”, Power Syst. …, núm. November, pp. 21–24, 2004.

    [26] S. Toune, H. Fudo, T. Genji, Y. Fukuyama, y Y. Nakanishi, “Comparative study of modern heuristic algorithms to service restoration in distribution systems”, IEEE Trans. Power Deliv., vol. 17, núm. 1, pp. 173–181, 2002.

    [27] J. S. Wu, C. C. Liu, K. L. Liout, y R. F. Chu, “A petri net algorithm for scheduling of generic restoration actions”, Power Syst. Restor. Methodol. Implement. Strateg., vol. 12, núm. 1, pp. 538–545, 2000.

    [28] A. S. Bretas y A. G. Phadke, “Artificial neural networks in power system restoration”, IEEE Trans. Power Deliv., vol. 18, núm. 4, pp. 1181–1186, 2003.

    [29] Y. Hsiao, C. Chien, y S. Member, “Enhancement of Restoration Service in Distribution Systems Using a Combination Fuzzy – GA Method”, Power, vol. 15, núm. 4, pp. 1394–1400, 2000.

    [30] K. Prasad, R. Ranjan, N. C. Sahoo, y a Chaturvedi, “Optimal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm”, IEEE Trans. Power Deliv., vol. 20, núm. 2, pp. 1211–1213, 2005.

    [31] R. Perez-Guerrero, G. T. Heydt, N. J. Jack, B. K. Keel, y A. R. Castelhano, “Optimal Restoration of Distribution Systems Using Dynamic Programming”, IEEE Trans. Power Deliv., vol. 23, núm. 3, pp. 1589–1596, 2008.

    [32] C. Wang, V. Vittal, V. S. Kolluri, y S. Mandal, “PTDF-based automatic restoration path selection”, IEEE Trans. Power Syst., vol. 25, núm. 3, pp. 1686–1695, 2010.

    [33] M. Piedad y P. Zuluaga, “Propuesta metodológica de tiempo real para el proceso de restablecimiento de un área operativa de un sistema eléctrico de potencia Real-time methodological proposal for the restoration process of an operational area of a Power Electrical System”, 2017.

    [34] W. Sun, C. C. Liu, y L. Zhang, “Optimal generator start-up strategy for bulk power system restoration”, IEEE Trans. Power Syst., vol. 26, núm. 3, pp. 1357–1366, 2011.

    [35] F. Wen, G. Ledwich, C. Zhang, Z. Lin, y Y. Xue, “Two-stage power network reconfiguration strategy considering node importance and restored generation capacity”, IET Gener. Transm. Distrib., vol. 8, núm. 1, pp. 91–103, 2014.

    [36] X. G. H. Zhong, “Optimisation of network reconfiguration based on a two-layer unit-restarting framework for power system restoration”, núm. August 2011, pp. 693–700, 2012.

    [37] H. Wang, C. He, y Y. Liu, “Pareto optimization of power system reconstruction using NSGA-II algorithm”, Asia-Pacific Power Energy Eng. Conf. APPEEC, núm. 1, pp. 1–5, 2010.

    [38] W. Teng, H. Wang, y Y. Jia, “Construction and control strategy research of black start unit containing wind farm”, IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2016–Janua, núm. 51177092, 2016.

    [39] A. Ketabi, A. Karimizadeh, y M. Shahidehpour, “Optimal generation units start-up sequence during restoration of power system considering network reliability using bi-level optimization”, Int. J. Electr. Power Energy Syst., vol. 104, núm. January 2018, pp. 772–783, 2019.

    [40] D. K. Maina y N.-K. C. Nair, “Recent advancements on Power System Restoration”, 2017 IEEE Innov. Smart Grid Technol. - Asia, pp. 1–5, 2017.

    [41] J. Li, X. Y. Ma, C. C. Liu, y K. P. Schneider, “Distribution system restoration with microgrids using spanning tree search”, IEEE Trans. Power Syst., vol. 29, núm. 6, pp. 3021–3029, 2014.

    [42] C. L. Moreira, F. O. Resende, y J. A. P. Lopes, “Using Low Voltage MicroGrids for Service Restoration”, IEEE Trans. Power Syst., vol. 22, núm. 1, pp. 395–403, 2007.

    [43] B. Zhao, X. Dong, y J. Bornemann, “Service Restoration for a Renewable-Powered Microgrid in Unscheduled Island Mode”, IEEE Trans. Smart Grid, vol. 6, núm. 3, pp. 1128–1136, 2015.

    [44] A. El-Zonkoy, “Integration of wind power for optimal power system black-start restoration”, Turkish J. Electr. Eng. Comput. Sci., vol. 23, pp. 1853–1866, 2015.

    [45] R. Hu, W. Hu, P. Li, C. Su, y Z. Chen, “A Dynamic Programming based Method for Optimizing Power System Restoration with High Wind Power Penetration”, 2016 IEEE 8th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), pp. 2022–2027, 2017.

    [46] A. E. B. Abu-elanien, M. M. A. Salama, y K. B. Shaban, “Modern network reconfiguration techniques for service restoration in distribution systems : A step to a smarter grid”, Alexandria Eng. J., vol. 57, núm. 4, pp. 3959–3967, 2018.

    [47] B. Zhang, S. Member, P. Dehghanian, y S. Member, “Optimal Allocation of PV Generation and Battery Storage for Enhanced Resilience”, IEEE Trans. Smart Grid, vol. 10, núm. 1, pp. 535–545, 2019.

    [48] S. Wen, “Energy Management and Coordinated Control Strategy of PV / HESS AC Microgrid During Islanded Operation”, IEEE Access, vol. 7, pp. 4432–4441, 2019.

    [49] Z. Jiang, F. Xiao, Q. Ai, Q. He, y Q. Sun, “Two-phase integrated optimisation strategy for network restoration with photovoltaic generation”, J. Eng., vol. 2017, núm. 13, pp. 1076–1081, 2017.

    [50] J. P. P. Carvalho, M. Shafie-khah, y G. Osório, “Multi-Agent System for Renewable Based Microgrid Restoration”, 2018.

  • Author Biographies

    Ricardo Andrés Pardo, Universidad de Antioquia
    Estudiante de Maestría en Ingeniería, Grupo de Investigación en Manejo Eficiente de la Energía (Gimel), Departamento de Ingeniería Eléctrica, Universidad de Antioquia. Medellín, Colombia.
    Jesus Maria Lopez-Lezama, Universidad de Antioquia
    Profesor del Departamento de Ingeniería Eléctrica, Grupo de Investigación en Manejo Eficiente de la Energía (Gimel), Universidad de Antioquia. Medellín, Colombia
How to Cite
Pardo, R. A., & Lopez-Lezama, J. M. (2019). A Literature Review of Optimal Generation Start-Up Methodologies for Power System Restoration considering Conventional and Non-Conventional Renewable Energy Sources. Revista Ingenierías Universidad De Medellín, 19(36), 187-204. https://doi.org/10.22395/rium.v19n36a9


Download data is not yet available.