Influence of the Printing position and the Infill Density on the Mechanical Properties of 3D Printed ABS Specimens

Keywords: ABS, additive manufacturing, FDM, tensile test, mechanical properties, 3D printing

Abstract

In this paper, the influence of the printing position and the infill density on the elastic modulus, yield strength, ultimate strength, and toughness are researched in specimens built by fused deposition modeling (FDM). ABS specimens were built in two positions, XY and XZ, in which the angle raster was -45°/45° and 0°/90°, respectively. These specimens were tested to find its mechanical properties, and the studied parameters’ influence was demonstrated. The discoveries allowed to identify that the mechanical properties of the final product differ from the ones in the base material (filament). In conclusion, to make parts by FDM, it is important to establish the mechanical properties of the final product, because these can differ substantially from the filament properties. Therefore, depending on the final application of the part, it will be necessary to established fabrication criteria that allow to build parts with more lifespan for a given load. 

  • References

    [1] Ö. Keleş, C. W. Blevins, K. J. Bowman y Ö. Kele, “Effect of build orientation on the mechanical reliability of 3D printed ABS”, Rapid Prototyp. J., vol. 23, n.° 2, pp. 320-328, 2017. DOI: 10.1108/RPJ-09-2015-0122.

    [2] W. Gao et al., “The status, challenges y future of additive manufacturing in engineering”, Comput. Des., vol. 69, pp. 65-89, 2015. DOI: 10.1016/j.cad.2015.04.001.

    [3] Y. Huang, M. C. Leu, J. Mazumder y A. Donmez, “Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations”, J. Manuf. Sci. Eng., vol. 137, n.° 1, p. 014001, 2015. DOI: 10.1115/1.4028725.

    [4] D. H. Stamatis, Failure mode and effect analysis : FMEA from theory to execution, Milwaukee: ASQ Quality Press, 2003. DOI: 10.1080/00401706.1996.10484424.

    [5] G. S. Wasserman, Reliability verification, testing and analysis in engineering design, Nueva York: Marcel Dekker, 2002. DOI: 10.1201/9780203910443.

    [6] I. Gibson, D. W. Rosen y B. Stucker, Additive Manufacturing Technologies, Boston: Springer, 2010. DOI: 10.1595/205651315X688406.

    [7] N. Aliheidari, R. Tripuraneni, A. Ameli y S. Nadimpalli, “Fracture resistance measurement of fused deposition modeling 3D printed polymers”, Polym. Test., vol. 60, pp. 94-101, Jul. 2017. DOI: 10.1016/J.POLYMERTESTING.2017.03.016.

    [8] S. Ahn, M. Montero, D. Odell, S. Roundy y P. K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp. J., vol. 8, n.° 4, pp. 248-257, 2002. DOI: 10.1108/13552540210441166.

    [9] O. A. Mohamed, H. Syed, Masood y J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects”, Advances in Manufacturing, vol. 3, pp. 42-53. DOI: 10.1007/s40436-014-0097-7.

    [10] K. Gnanasekaran et al., “3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling”, Appl. Mater. Today, vol. 9, pp. 21-28, 2017. DOI: 10.1016/J.APMT.2017.04.003.

    [11] S. Berretta, R. Davies, Y. T. Shyng, Y. Wang y O. Ghita, “Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites”, Polym. Test., vol. 63, pp. 251-262, 2017. DOI: 10.1016/J.POLYMERTESTING.2017.08.024.

    [12] J. Torres, J. Cotelo, J. Karl y A. P. Gordon, “Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives”, JOM, vol. 67, n.° 5, pp. 1183–1193, 2015. DOI: 10.1007/s11837-015-1367-y.

    [13] N. G. Tanikella, B. Wittbrodt y J. M. Pearce, “Tensile strength of commercial polymer materials for fused filament fabrication 3D printing”, Addit. Manuf., vol. 15, pp. 40-47, 2017. DOI: 10.1016/j.addma.2017.03.005.

    [14] B. M. Tymrak, M. Kreiger y J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions”, Mater. Des., vol. 58, pp. 242–246, 2014. DOI: 10.1016/j.matdes.2014.02.038.

    [15] Ultimaker, Manual de instalación y uso Ultimaker 2+: hace que lo fácil sea incluso más fácil, Países Bajos: Ultimaker, 2016.

    [16] ASTM International, Standard Test Method for Tensile Properties of Plastics 1, West Conshohocken: ASTM, 2019. DOI: 10.1520/D0638-14.

    [17] B. Rankouhi, S. Javadpour, F. Delfanian y T. Letcher, “Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation”, J. Fail. Anal. Prev., vol. 16, pp. 467-481, 2016. DOI: 10.1007/s11668-016-0113-2.

    [18] A. Bellini y S. Güçeri, “Mechanical characterization of parts fabricated using fused deposition modeling”, Rapid Prototyp. J., vol. 9, n.° 4, pp. 252-264, 2003. DOI: 10.1108/13552540310489631.

    [19] O. A. Mohamed, S. H. Masood y J. L. Bhowmik, “Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion”, Measurement, vol. 81, pp. 174–196, 2016. DOI: 10.1016/J.MEASUREMENT.2015.12.011.

    [20] C. Chung Wang, T. Lin y S. Hu, “Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis”, Rapid Prototyp. J., vol. 13, n.° 5, pp. 304–315, 2007. DOI: 10.1108/13552540710824814.

    [21] A. K. Sood, R. K. K. Ohdar y S. S. S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Materials & Design, vol. 31, n.° 1, pp. 287-295, 2010. DOI: 10.1016/j.matdes.2009.06.016.

    [22] F. Rayegani y G. C. Onwubolu, “Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE)”, Int. J. Adv. Manuf. Technol., vol. 73, n.° 1-4, pp. 509–519, 2014. DOI: 10.1007/s00170-014-5835-2.

    [23] D. Popescu, A. Zapciu, C. Amza, F. Baciu y R. Marinescu, “Material Properties FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polym. Test., vol. 69, pp. 157-166, 2018. DOI: 10.1016/j.polymertesting.2018.05.020.

    [24] A. M. Do Nald y E. J. Krame, “Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS]”, Journal of Materials Science, vol. 17, pp. 1765-1772, 1982. DOI: https://doi.org/10.1007/BF00540805.

    [25] R. W. Truss y G. A. Chadwick, “Tensile deformation ABS polymers behaviour of ABS polymers”, Journal of Materials Science, vol. 11, pp. 111-117. DOI: 10.1007/BF00541081.

    [26] R. Braglia y M. SpA, “Craze formation in ABS polymers”, Journal of Materials Science, vol. 19, pp. 2643–2650 1984. DOI: 10.1007/BF00550821.

  • Author Biographies

    Manuel José Carvajal Loaiza, Universidad de Antioquia

    Estudiante de Ingeniería Mecánica, Grupo Diseño Mecánico, Universidad de Antioquia.

    Pablo Gónzalez Diaz, Universidad de Antioquia

    Estudiante de Ingeniería Mecánica, Grupo Diseño Mecánico, Universidad de Antioquia

    Carlos Alberto Mejía Blandón, Universidad de Antioquia

    Magíster en ingeniería y candidato a doctor en ingeniería de materiales. Profesor del Departamento de Ingeniería Mecánica, Grupo Diseño Mecánico, Universidad de Antioquia.

    Liliana Marcejal Bustamante Góez, Universidad de Antioquia

    Magister en Ingeniería Candidato a Doctorado en Ingeniería de Materiales, Profesor Departamento de Ingeniería Mecánica, Grupo Diseño Mecánico. Universidad de Antioquia.

    Junes Abdul Villarraga Ossa, Universidad de Antioquia

    Magíster en ingeniería mecánica. Doctorado en Ingeniería y Ciencia de los Materiales, Profesor del Departamento de Ingeniería Mecánica, Grupo Diseño Mecánico, Universidad de Antioquia

Published
2020-03-02
How to Cite
Carvajal Loaiza, M. J., Gónzalez Diaz, P., Mejía Blandón, C. A., Bustamante Góez, L. M., & Villarraga Ossa, J. A. (2020). Influence of the Printing position and the Infill Density on the Mechanical Properties of 3D Printed ABS Specimens. Revista Ingenierías Universidad De Medellín, 19(37), 179-193. https://doi.org/10.22395/rium.v19n37a9

Downloads

Download data is not yet available.