Morphology of chars of bagasse-coal mixtures: effect of particle size and concentration of bagasse
Main Article Content
Abstract
In this work, the char morphology from coal-sugarcane bagasse with concentrations of 0, 25, 50, 75 and 100 % w/w and particle sizes -0.25 mm and -20 mm was evaluated. The samples were fed to a devolatilization process at 900 °C in a tubular drop reactor (-0.25 mm) and a batch-type fixed bed reactor (-20 mm). The morphology of the char was determined through image analysis. The surface area was evaluated by BET analysis for particle size -0.25 mm. The results showed that for particle sizes -20 mm synergistic effects were obtained towards the generation of reactive morphologies (thin walls + thick walls) with the increase in bagasse concentration. It was found that coal generated a higher concentration of thick and solid wall morphologies.
Article Details
References
Inter nat ional Energy Agency ( IEA), 2018. ht t ps: //webs t ore. iea.org/co2-emissions-from-fuel-combustion-2018-overview
E. Vakkilainen, Steam Generation from Biomass: Construction and Design of Large Boilers. 1° ed. Amsterdam, Países Bajos: Butterworth-Heinemann, 2017.
Unidad de Planeación Minero Energética (UPME), Universidad Industrial de Santander, IDEAM, 2011. http://bdigital.upme.gov.co/handle/001/1058
A. Campos, A. Carvajal, C. Chávez, 'Cogeneración - Más Que Azúcar , Una Fuente de Energía Renovable Para El País', Asocaña, Cali, Colombia, mayo de 2017.
C. Wang, F. Wang, Q. Yang y R. Liang, 'Thermogravimetric studies of the behavior of wheat straw with added coal during combustion', Biomass and Bioenergy, vol. 33, no. 1, pp. 50-56, 2009.
E. Biagini, F. Lippi, L. Petarca y L. Tognotti, 'Devolatilization rate of biomasses and coalbiomass blends: An experimental investigation', Fuel, vol. 81, no. 8, pp. 1041-1050, 2002.
R. Bilbao, J. Mastral, M. Aldea y J. Ceamanos, 'Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere', Journal of Analytical and Applied Pyrolysis, vol. 39, no. 1, pp. 53-64, 1997.
C. Avila, P. Cheng, T. Wu y E. Lester, 'Morphology and Reactivity Characteristics of Char Biomass Particles', Bioresource Technology-Elsevier, vol. 102, no. 8, pp. 5237-5243, 2011.
C. Di-Blasi, 'Combustion and Gasification Rates of Lignocellulosic Chars', Progress in Energy and Combustion Science, vol. 35, no. 2, pp. 121-140, 2009.
E. Fisher, C. Dupont, L. Darvell, J. Commandré, A. Saddawi, J. Jones, M. Grateau, T. Nocquet y S. Salvador, 'Combustion and Gasification Characteristics of Chars from Raw and Torrefied Biomass', Bioresource Technology, vol. 119, pp. 157-165, 2012.
J. Wang, S. Zhang, X. Guo, A. Dong, C. Chen, S. Xiong, Y. Fang y W. Yin, 'Thermal Behaviors and Kinetics of Pingshuo Coal/Biomass Blends during Copyrolysis and Cocombustion', Energy and Fuels, vol. 26, no. 12, pp. 7120-7126, 2012.
C. Pang, E. Lester y T. Wu, 'Influence of Lignocellulose and Plant Cell Walls on Biomass Char Morphology and Combustion Reactivity' Biomass and Bioenergy, vol. 119, pp. 480-491, 2018.
Ch. Guizani, M. Jeguirim, S. Valin, L. Limousy y S. Salvador, 'Biomass Chars: The Effects of
Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity', Energies, vol. 10, no. 6, pp. 796, 2017.
Z. Wu, W. Yang y B. Yang, 'Thermal Characteristics and Surface Morphology of Char during C o-Pyrolysis of L ow-Rank C oal Blended w ith M icroalgal Biomass: E ffects of Nannochloropsis and Chlorella', Bioresource Technology, vol. 249, pp. 501-509, 2018.
E. Lester, et al., 'A Proposed Biomass Char Classification System', Fuel Processing Technology, vol. 232, pp. 845-854, 2018.
S. Krerkkaiwan, C. Fushimi, A. Tsutsumi y P. Kuchonthara, 'Synergetic Effect during Co-Pyrolysis/Gasification of Biomass and Sub-Bituminous Coal', Fuel Processing Technology, vol. 115, pp. 11-18, 2013.
E. García, 'Reactividad de carbones mezclados mediante caracterización morfológica de carbonizados', tesis de maestría, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2013.
C. Castro, V. Sanabria, 'Morfología de carbonizados procedentes de mezclas carbón-bagazo de caña en un proceso de pirólisis', tesis de pregrado, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2015.
J. Paredes, L. Sinisterra, 'Morfología de carbonizados de mezclas carbón-bagazo obtenidos en atmósfera de N2 y CO2', tesis de pregrado, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2017.
E. Lester et al., 'The Procedure Used to Develop a Coal Char Classification'Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology', International Journal of Coal Geology, vol. 81, no. 4, pp. 333-342, 2010.
J. Shen, S. Zhu, X. Liu, H. Zhang y J. Tan, 'The prediction of elemental composition of biomass based on proximate analysis', Energy Conversion and Management, vol. 51, no.5, pp. 983-987, 2010.
M. Chan, J. Jones, M. Pourkashanian y A. Williams, 'The Oxidative Reactivity of Coal Chars in Relation to Their Structure', Fuel Processing Technology, vol. 78, no. 13, pp. 1539-1552,
S. Daood, S. Munir, W. Nimmo y B. Gibbs, 'Char Oxidation Study of Sugar Cane Bagasse, Cotton Stalk and Pakistani Coal under 1 % and 3 % Oxygen Concentrations', Biomass and Bioenergy, vol. 34, no. 3, pp. 263-271, 2010.
A. Rojas y J. Barraza, 'Pulverized Coal Devolatilisation Prediction', DYNA, Vol. 75, no. 154, pp. 113-122, 2008.
S. Badzioch y P. Hawksley, 'Kinetics of Thermal Decomposition of Pulverized Coal Particles', Industrial and Engineering Chemistry Process Design and Development, vol. 9, no. 4, pp. 521-530, 1970.
R. Barranco, M. Cloke y E. Lester, 'The effect of operating conditions and coal type on char reactivity and morphology during combustion in a drop tube furnace', in The Ninth Australian Coal Science Conference, Brisbane, Australia, 2001.
J. Gibbins, C. Man y K. Pendlebury, 'Determination of rapid heating volatile matter contents as a routine test', Combustion Science and Techonology, vol. 93, no. 1, pp. 349-361, 1993.
E. Lester, 'The Characterisation of Coals for Combustion', Ph.D. disertación, dept. quím. ing., University of Nottingham, Nottingham, Inglaterra, 1994.
M. Carvalho, F. Lockwood, W. Fiveland y C. Papadopoulos, 'Combustion technologies for a clean environment', Environmental Progress, vol. 16, no. 4, 2006.
A. Vyas, T. Chellappa y J. Goldfarb, 'Porosity Development and Reactivity Changes of Coal-biomass Blends during Co-Pyrolysis at Various Temperatures', Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 79-88, 2017.
H. Haykiri y S. Yaman, 'Interaction between biomass and different rank coals during copyrolysis', Renewable Energy, vol. 35, no. 1, pp. 288-292, 2010.
Y. Kar, 'Bioresource Technology Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor', Bioresource Technology, vol. 102, no, 20, pp. 9800-9805, 2011.
Ö. Onay, E. Bayram y Ö. Koçkar, «Copyrolysis of Seyitömer−Lignite and Safflower Seed: Influence of the Blending Ratio and Pyrolysis Temperature on Product Yields and Oil Characterization», Energy Fuels, vol. 21, no. 5, pp. 3049-3056, 2007.
D. Park, S. Kim, H. Lee y J. Lee, 'Bioresource Technology Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor', Bioresource Technology, vol. 101, no. 15, pp. 6151-6156, 2010.
D. Vamvuka y S. Sfakiotakis, 'Combustion behaviour of biomass fuels and their blends with lignite', Thermochimica Acta, vol. 526, no. 1-2, pp. 192-199, 2011.
Z. Wu, S. Wang, J. Zhao, L. Chen y H. Meng, 'Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal', Bioresource Technology, vol. 169, pp. 220-228, 2014.
H. Junhao et al., 'Influence of volatiles-char interactions between coal and biomass on the volatiles released, resulting char structure and reactivity during co-pyrolysis', Energy Conversion and Management, vol. 152, pp. 229-238, 2017.