Motion capture for operations analysis: a footwear sector case study

Main Article Content

María Juliana Cardona Márquez
Alex Mauricio Ovalle Castiblanco

Abstract

The footwear sector in Colombia is predominantly composed of micro, small, and medium-sized enterprises (MSMEs) that rely heavily on manual processes and low technological adoption. This study aims to validate a
methodology for motion-based operation analysis in real production environments, using optical motion capture (MoCap) systems integrated with virtual simulations. A footwear company’s manual assembly was analyzed
using four infrared cameras and reflective markers placed on workers’ wrists and index fingers. The motion data were processed in MATLAB to recreate the operation virtually and identify types of movements and frequency . Results showed a total of 539 movements during a 90-second
cycle, 215 operations (39.9%), 35 transports (6.5%), and 289 hold positions (53.6%). The average time per productive operation was 0.41 seconds, yielding an estimated productivity of 146 operations per minute. The virtual
simulation highlighted a concentration of hand trajectories within the normal reach zone, indicating an efficient spatial arrangement. However, a high proportion of nonproductive movements revealed significant opportunities for method standardization and ergonomic design improvement. MoCap system implementation of enabled automated movement classification and trajectory analysis without manual segmentation, thus overcoming the subjectivity and limitations of traditional observation. Despite minor data losses due to environmental interferences, the system proved robust and applicable in an active industrial setting. This research demonstrates the feasibility of incorporating MoCap technology into time and motion studies for real manufacturing contexts, offering helpful tips for process
redesign, operator training, and ergonomic assessment.


How to Cite
Cardona Márquez, M. J., & Ovalle Castiblanco, A. M. (2025). Motion capture for operations analysis: a footwear sector case study. Revista Ingenierías Universidad De Medellín, 25(48). https://doi.org/10.22395/rium.v25n48a1

Article Details

References

World Population Review, “Shoe Production by Country 2025.” (on-line). Disponible: https://worldpopulationreview.com/country-rankings/shoe-production-by-country

ACICAM. Industria del calzado colombiano. Asociación Colombiana de Industriales del Calzado, Cuero y sus Manufacturas, 2023.

Ministerio de Comercio, Industria y Turismo, “Exportaciones de cuero, calzado y marroquinería crecieron 72,2% en 2021,” 2022. (on-line). Disponible: https://www.mincit.gov.co/prensa/noticias/industria/crecen-exportaciones-cuero-calzado-y-marroquineria

Observatorio Inexmoda, “Calzado y Marroquinería - Informe de Coyuntura,” noviembre 2024.

Statista, “Footwear - Colombia | Statista Market Forecast,” 2025. (on-line). Disponible: https://www.statista.com/outlook/cmo/footwear/colombia

D. Ramírez, “Perspectiva estructural del calzado en Colombia,” Cámara Colombiana del Cuero, Calzado y Marroquinería, 2023.

J. Maynard, Industrial Engineering Handbook, 3rd ed., New York, NY, USA: McGraw-Hill, 1992.

H. Niebel, Ingeniería industrial y de métodos, Alfaomega, 2005.

M. Menolotto et al., “Motion Capture Technology in Industrial Applications: A Systematic Review,” Sensors, vol. 20, no. 19, p. 5687, 2020. doi: 10.3390/s20195687. [En línea]. Disponible: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583783/

J. E. Naranjo et al., “Wearable Sensors in Industrial Ergonomics: Enhancing Safety and Productivity in Industry 4.0,” in Italian National Conference on Sensors, 2025.

M. Benter and P. Kuhlang, “Analysing Body Motions Using Motion Capture Data,” in Proc. Int. Conf. on Applied Human Factors and Ergonomics (AHFE), 2019.

S. Hong et al., “Productivity Measurement through IMU-Based Detailed Activity Recognition Using Machine Learning: A Case Study of Masonry Work,” Sensors, vol. 23, no. 17, p. 7635, 2023. doi: 10.3390/s23177635. [En línea]. Disponible: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490776/

F. Pilati et al., “Learning Manual Assembly Through Real-Time Motion Capture for Operator Training with Augmented Reality,” Procedia Manufacturing, vol. 45, pp. 189–195, 2020. doi: 10.1016/j.promfg.2020.04.093.

R. Rybnikár, M. Mahdal y L. Zeman, “Human body motion analysis for improved workplace ergonomics: A practical approach,” Machines, vol. 11, no. 5, p. 475, 2023. doi: 10.3390/machines11050475

A. Agostinelli et al., “Automatic ergonomic risk assessment using human pose estimation with monocular cameras,” Scientific Reports, vol. 14, p. 11025, 2024. doi: 10.1038/s41598-024-47410-2

H. A. Tinoco, A. M. Ovalle, C. A. Vargas y M. J. Cardona, “An automated time and hand motion analysis based on planar motion capture extended to a virtual environment,” SN Applied Sciences, vol. 3, 2021. doi: 10.1007/s42452-021-04728-2. Disponible: https://link.

springer.com/article/10.1007/s42452-021-04728-2

Instituto I3A – Univ. de Zaragoza, “Un sistema virtual de captura del movimiento permite conocer mejor los problemas musculoesqueléticos derivados del trabajo,” 2021. [on-line]. Disponible: http://i3a.unizar.es/es/noticias/un-sistema-virtual-de-captura-del-movimientopermite-conocer-mejor-los-problemas-musculo

S. Tripathi, M. A. Jiménez y D. Mejía, “Ergonomía y productividad: análisis de correlación en estaciones manuales usando captura de movimiento,” Rev. Ing. Ind. Aplic., vol. 15, no. 2, pp. 73–88, 2025.

L. Brosche, M. Reichelt, T. Prinz y J. Franke, “Personalized ergonomics using human digital twins and motion capture in manual assembly,” in Proc. IEEE Int. Conf. on Industrial Engineering and Engineering Management (IEEM), 2024. doi: 10.1109/IEEM55944.2024.10262178

F. Rojas, C. Leiva y M. González, “Digital twins in manufacturing: Integrating motion capture and AI for process optimization,” Procedia CIRP, vol. 121, pp. 23–29, 2023. doi: 10.1016/j.procir.2023.03.005

G. Vignali, A. Viola y L. Bonvicini, “Motion analysis and digital human modeling to assess ergonomic risk,” Int. J. Ind. Ergonomics, vol. 80, p. 103072, 2021. doi: 10.1016/j.ergon.2020.103072

X. Yang, S. Wang, Y. Li y H. Zhou, “A survey of motion capture technology for ergonomics and its applications in Industry 4.0,” IEEE Access, vol. 11, pp. 44455–44475, 2023. doi: 10.1109/ACCESS.2023.3274401

T. Nguyen y D. Drira, “Human–robot collaboration: An ergonomic point of view,” Appl. Sci., vol. 12, no. 9, p. 4560, 2022. doi: 10.3390/app12094560

R. Kropp, T. Schmidt y F. Mauel, “Integrating ergonomics and AI in human–digital twin interaction for adaptive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 124, pp. 3951–3964, 2023. doi: 10.1007/s00170-023-11903-4

C. González y F. Peña, “Integración de sensores inerciales y visión artificial en el análisis de operaciones manuales,” Ing. Investig., vol. 41, no. 2, pp. 102–110, 2021.

A. Caputo, M. Greco y R. Bortolini, “Ergonomic re-design of workstations through motion capture and EAWS evaluation,” Ergonomics, vol. 63, no. 7, pp. 912–928, 2020. doi: 10.1080/00140139.2020.1745145

D. Ramírez, A. Carrillo y J. B. Téllez, “Estado de la industria del calzado en Colombia: desafíos y oportunidades,” Estud. Econ. Emp., vol. 13, no. 2, pp. 211–232, 2024.

OECD, “Productivity in the Footwear Industry: Structural Analysis and Recommendations,”Technical Report, París, 2023.

C. Castellanos, L. Ramírez y J. Mendoza, “Ergonomía digital y captura de movimiento: retos y aplicaciones en manufactura,” Rev. Latinoam. Ing. Ind., vol. 41, no. 1, pp. 65–80, 2024.

Author Biographies

María Juliana Cardona Márquez, Universidad Autónoma de Manizales, Colombia

PhD. Universidad Autónoma de Manizales. Grupo de investigación Diseño Mecánico y Desarrollo Industrial. Caldas, Colombia

Alex Mauricio Ovalle Castiblanco, Universidad Autónoma de Manizales

PhD. Universidad Autónoma de Manizales. Grupo de investigación Diseño Mecánico y Desarrollo Industrial. Caldas, Colombia