Finite Element Analysis of an Evaporation System to Synthesize Kesterite Thin Films

  • Carlos Rondón Almeyda Estudiante Maestría en Ingeniería de Materiales
  • Monica Botero Profesor Planta Universidad Industrial de Santander
  • Rogelio Ospina Profesor Planta Universidad Industrial de Santander
Keywords: Kesterite, evaporation, Finite-elements, Absorber-layer, Heat-distribution, COMSOL, Thin film solar cells, CZTS.

Abstract

Currently, there is an interest within the scientific community in thin-film solar cells with a Kesterite (Cu2ZnSnS4) type absorber layer, since they report a theoretical efficiency greater than 32%. The synthesis of Kesterites by evaporation has allowed for efficiencies at the laboratory level of 11.6%. Although these are good results, the design of the evaporation chamber and the distribution of the electrodes is important to control synthesis parameters and evaporate each precursor in the corresponding stage. This project seeks to design an evaporation chamber that can achieve a vacuum of 10-5 mbar, increase the deposition surface, and avoid each precursor evaporation in a non-corresponding stage. This last objective was studied using COMSOL multiphysics R. (licensed product) software, with the adequate disposition of metallic precursors (zinc, copper, and tin) determined by analyzing heat distribution. It was concluded that the lower the evaporation temperature of the precursor, the height of the copper electrode in the system must be lower. This is because with a lower height the concentration of heat in the container is lower. This article is classified as a research result and its financing was made by Universidad Industrial de Santander.

  • References

    [1] R. H. Bube, Photovoltaic materials: properties of semiconductor materials. Londres: Imperial Collage press, 1998, 2093 p.
    [2] J. C. Gonzáles, A. Abelenda, y M. Sanchez. Caracterización de capas delgadas de Cu2ZnSnS4 para aplicaciones fotovoltaicas. Habana: Universidad de la Habana, 2016.
    [3] S. Xiangbo, J. Xu, L. Ming, L. Weidong, L. Xi, y Z. Hua. “A review on development prospect of CZTS based thin film solar cells”. Hindawi Limited; International Journal of Photoenergy, Vol 2014, p 1-11, 2014. http://dx.doi.org/10.1155/2014/613173
    [4] S. Thiruvenkadam, S. Prabhakaran, S. Chakravarty, V. Ganesan, V. Sathe, M. Santhosh Kumar y L. Rajesh. “Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique”. Physica B: Condensed Matter, Vol 533, p 22-27. 28 de diciembre del 2017. https://doi.org/10.1016/j.physb.2017.12.065
    [5] J. B. Carda, T. Stoyanova, y R. Martí. Obtención de estructuras calcopirita (CIGS) y kesterita (CZTS) como absorventes para dispositivos fotovoltaicos de capa fina mediante métodos de síntesis de bajo coste. Castellon de la Plana: Universitat JAUME I de Castellon, 2016, p 228.
    [6] E. Garcia Llamas, J. Merino, R. Gunder, K. Neldner, D. Greiner, S. Steiger Giraldo, V. Izquierdo Roca, E. Saucedo, M. Leon, S. Schorr y R. Caballero. “Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment”. Solar Energy, Vol. 141, p 236-241. 2017. http://dx.doi.org/10.1016/j.solener.2016.11.035
    [7] M. Neuschitzer, E. Saucedo, y A. Pérez. Development of Cu2ZnSnS4 based thin film solar cells by PVD and chemical based processes. Barcelona: Universidad de Barcelona, 2016, p138.
    [8] T. Tunaka, A. Yoshida, D. Saiki, K. Saito, G. Qixin, M. Nishio, y T. Yamaguchi. “Influence of composition ratio on properties of Cu2ZnSnS4 thin film fabricated by co-evaporation”. Thin Solid Films, Vol. 518, p S29-S33, 2010. https://doi.org/10.1016/j.tsf.2010.03.026.
    [9] Y. P. Lin, Y. F. Chi, T. E. Hsieh, Y. C. Chen, y K. P. Huang. “Preparation of Cu2ZnSnS4 (CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells”. Journal of Alloys and Compounds, Vol. 654, p. 498-508. 2016. 10.1016/j.jallcom.2015.09.111
    [10] U. Chalapathi, S. Uthanna, y V. Sundara Raja. “Growth of Cu2ZnSnS4 thin films by co-evaporation-annealing route: effect of annealing temperature and duration”. Journal of Materials Sciencie: Materials in Electronics Vol. 27, p 1048-1057, 2018. https://doi.org/10.1007/s10854-017-8005-0
    [11] S. Y. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus y S. Guha. “Cu2ZnSnS4 thin-film solar cells by thermal coevaporation with 11.6% efficiency and improved minority carrier diffusion length”. Advance Energy Materials, Vol. 5. 2015. https://doi.org/10.1002/aenm.201401372
    [12] X. Fontané Sanchez, A. Pérez Rodriguez, y V. Izquerdo Roca. Caracterización por espectroscopia Raman de semiconductores Cu2ZnSnS4 para nuevas tecnologías fotovoltaicas, Barcelona: Universidad de Barcelona. 2011, p138.
    [13] Shiyou C. Cu2ZnSnS4 Cu2Zn(SnSe)4, and related materials. Semiconductor Materials for Solar Photovoltaic Cells, Vol 218, p 75-103, 2016.
Published
2020-05-06
How to Cite
Rondón Almeyda, C. E., Botero Londoño, M. A., & Ospina Ospina, R. (2020). Finite Element Analysis of an Evaporation System to Synthesize Kesterite Thin Films. Revista Ingenierías Universidad De Medellín, 20(38). Retrieved from https://revistas.udem.edu.co/index.php/ingenierias/article/view/3074

Downloads

Download data is not yet available.