Thermal Characteristics of TIO2 Nanocomposite in a Polyurethane Matrix Made with Castor Oil

Abstract

Nanocomposites are multiphase structures with at least one phase dimension of nanometric order size. Polymer-based materials mixed with low proportions of titanium dioxide nanoparticles (NPs-TiO2) present a versatile alternative in different industrial applications, considering the optimization of mechanical and thermal properties with respect to pure polymers and conventional materials. In this work, the synthesis and measurement of thermal characteristics of a nanocomposite formed by NPs-TiO2, 5 nm particle size Anatase phase, in a polyurethane matrix, made with castor oil is reported. The polymeric matrix was obtained through the reaction between the self-condensation of castor oil and diphenylmethane diisocyanate (MDI), while in the synthesis of NPs-TiO2 the sol-gel technique was used, using as precursor titanium (IV)-bis(acetylacetonate) diisopropoxide. The specific heat (Cp) of the samples was measured by means of the thermal relaxation method and the thermal diffusivity was determined with the photoacoustic technique (α). Cp of the nanocomposite increased by 12.98 % due to addition of the NPs, while α decreased by 98.63 %, compared to the corresponding values of the polyurethane matrix. With a concentration of 3 wt % of NPs-TiO2 in the matrix, these thermal parameters were found to be below the average values of conventional plastics.

References

[1] M. A. Alaa, K. Yusoh, and S. F. Hasany, “Comparative study of physico-chemical properties of pure polyurethane and polyurethane based on castor oil,” in Advanced Materials Research, 2014, vol. 983, pp. 39–43, doi: 10.4028/www.scientific.net/AMR.983.39.
[2] Í. C. Rios et al., “Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market,” Ind. Crops Prod., vol. 145, p. 112000, 2020, doi: https://doi.org/10.1016/j.indcrop.2019.112000.
[3] Y. Hu, C. Liu, Q. Shang, and Y. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coatings Technol. Res., vol. 15, no. 1, pp. 77–85, 2018, doi: 10.1007/s11998-017-9948-z.
[4] T. Gurunathan, S. Mohanty, and S. K. Nayak, “Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization,” Prog. Org. Coatings, vol. 80, pp. 39–48, 2015, doi: 10.1016/j.porgcoat.2014.11.017.
[5] X. P. An, J. H. Chen, Y. D. Li, J. Zhu, and J. B. Zeng, “Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening,” Sci. China Mater., vol. 61, no. 7, pp. 993–1000, 2018, doi: 10.1007/s40843-017-9192-8.
[6] K. P. Somani, S. S. Kansara, N. K. Patel, and A. K. Rakshit, “Castor oil based polyurethane adhesives for wood-to-wood bonding,” Int. J. Adhes. Adhes., vol. 23, no. 4, pp. 269–275, 2003, doi: 10.1016/S0143-7496(03)00044-7.
[7] B. B. R. Silva, R. M. C. Santana, and M. M. C. Forte, “A solventless castor oil-based PU adhesive for wood and foam substrates,” Int. J. Adhes. Adhes., vol. 30, no. 7, pp. 559–565, 2010, doi: 10.1016/j.ijadhadh.2010.07.001.
[8] B. Fahrngruber, J. Eichelter, S. Erhäusl, B. Seidl, R. Wimmer, and N. Mundigler, “Potato-fiber modified thermoplastic starch: Effects of fiber content on material properties and compound characteristics,” Eur. Polym. J., vol. 111, pp. 170–177, 2019, doi: 10.1016/j.eurpolymj.2018.10.050.
[9] I. S. Ristić et al., “Thermal stability of polyurethane materials based on castor oil as polyol component,” J. Therm. Anal. Calorim., vol. 111, no. 2, pp. 1083–1091, 2013, doi: 10.1007/s10973-012-2497-x.
[10] I. S. Ristić et al., “The properties of polyurethane hybrid materials based on castor oil,” Mater. Chem. Phys., vol. 132, no. 1, pp. 74–81, 2012, doi: 10.1016/j.matchemphys.2011.10.053.
[11] V. V. Gite, A. B. Chaudhari, R. D. Kulkarni, and D. G. Hundiwale, “Renewable source-based polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO2,” Pigment Resin Technol., vol. 42, no. 6, pp. 353–361, 2013, doi: 10.1108/PRT-02-2012-0017.
[12] A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, “Effect of various plasticizers and concentration on the physical , thermal , mechanical , and structural properties of cassava-starch-based films,” pp. 1–11, 2016, doi: 10.1002/star.201500366.
[13] J. Pavličević et al., “The effect of TiO2 particles on thermal properties of polycarbonate-based polyurethane nanocomposite films,” J. Therm. Anal. Calorim., vol. 138, no. 3, pp. 2043–2055, 2019, doi: 10.1007/s10973-019-08750-3.
[14] F. J. Aguilar-pérez et al., “Titanium - castor oil based polyurethane composite foams for bone tissue engineering,” J. Biomater. Sci. Polym. Ed., vol. 0, no. 0, pp. 1–18, 2019, doi: 10.1080/09205063.2019.1636352.
[15] S. Kharroub, S. Laflamme, S. Madbouly, and F. Ubertini, “Bio-based soft elastomeric capacitor for structural health monitoring applications,” Struct. Heal. Monit., vol. 14, no. 2, pp. 158–167, 2015, doi: 10.1177/1475921714560072.
[16] S. A. Yesudass, S. Mohanty, and S. K. Nayak, “Facile synthesis of bio-sourced polyurethane- fluorosilane modified TiO2 hybrid coatings for high-performance self cleaning application,” J. Polym. Res., vol. 25, no. 2, pp. 1–10, 2018, doi: 10.1007/s10965-017-1430-1.
[17] S. Chen, Q. Wang, T. Wang, and X. Pei, “Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites,” Mater. Des., vol. 32, no. 2, pp. 803–807, 2011, doi: 10.1016/j.matdes.2010.07.021.
[18] M. Malik and R. Kaur, “Mechanical and Thermal Properties of Castor Oil–Based Polyurethane Adhesive: Effect of TiO2 Filler,” Adv. Polym. Technol., vol. 37, no. 1, pp. 24–30, 2018, doi: 10.1002/adv.21637.
[19] M. Alam, N. M. Alandis, F. Zafar, E. Sharmin, and Y. M. Al-Mohammadi, “Polyurethane-TiO2 nanocomposite coatings from sunflower- oil-based amide diol as soft segment,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 55, no. 10, pp. 698–708, 2018, doi: 10.1080/10601325.2018.1526638.
[20] S. K. Jaganathan, M. P. Mani, A. Z. M. Khudzari, A. F. Ismail, M. Ayyar, and R. Rathanasamy, “Enriched physicochemical and blood-compatible properties of nanofibrous polyurethane patch engrafted with juniper oil and titanium dioxide for cardiac tissue engineering,” Int. J. Polym. Anal. Charact., vol. 24, no. 8, pp. 696–708, 2019, doi: 10.1080/1023666X.2019.1662590.
[21] H. Shin, S. Yang, S. Chang, S. Yu, and M. Cho, “Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance,” Polymer (Guildf)., vol. 54, no. 5, pp. 1543–1554, 2013, doi: https://doi.org/10.1016/j.polymer.2013.01.020.
[22] L. H. Poley et al., “Photothermal Methods and Atomic Force Microscopy Images Applied to the Study of Poly ( 3-Hydroxybutyrate ) and Poly ( 3-Hydroxybutyrate- co -3-Hydroxyvalerate ) Dense Membranes,” 2000, doi: 10.1002/app.21891.
[23] A. Bedoya, E. Marín, A. M. Mansanares, M. A. Zambrano-Arjona, I. Riech, and A. Calderón, “On the thermal characterization of solids by photoacoustic calorimetry: thermal diffusivity and linear thermal expansion coefficient,” Thermochim. Acta, vol. 614, pp. 52–58, 2015, doi: https://doi.org/10.1016/j.tca.2015.06.009.
[24] A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys., vol. 47, no. 1, pp. 64–69, 1976, doi: 10.1063/1.322296.
[25] M. R. Nisha, M. S. Jayalakshmy, and J. Philip, “Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering,” Pramana - J. Phys., vol. 81, no. 5, pp. 849–864, 2013, doi: 10.1007/s12043-013-0605-5.
[26] S. Nishigori, N. Miyamoto, T. Ikeda, and T. Ito, “Specific heat of CeRh2Si2 under high pressure measured by a thermal relaxation method,” Phys. B Condens. Matter, vol. 359–361, pp. 172–174, 2005, doi: https://doi.org/10.1016/j.physb.2005.01.026.
[27] Y. Ochoa, Y. Ortegón, J. Enrique, and R. Páez, “gel : estudio del efecto de la presencia de AcacH en el sistema Synthesis of TiO 2 , anatase phase by the sol-gel method : study of the effect of the presence of AcacH in the system,” pp. 29–40, 2010.
[28] M. Cargnello, T. R. Gordon, and C. B. Murray, “Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals,” Chemical Reviews, vol. 114, no. 19. pp. 9319–9345, 2014, doi: 10.1021/cr500170p.
[29] D. S. Volkov, O. B. Rogova, and M. A. Proskurnin, “Photoacoustic and photothermal methods in spectroscopy and characterization of soils and soil organic matter,” Photoacoustics, vol. 17, p. 100151, 2020, doi: https://doi.org/10.1016/j.pacs.2019.100151.
[30] T. A. El-Brolossy and S. S. Ibrahim, “Thermal conductivity and heat capacity of poly(3-octylthiophene-2,5 diyl) and its multi-wall carbon nanotube composites,” Phys. Scr., vol. 89, no. 10, 2014, doi: 10.1088/0031-8949/89/10/105701.
[31] A. Haghighatzadeh, “Comparative analysis on optical and photocatalytic properties of chlorophyll/curcumin-sensitized TiO 2 nanoparticles for phenol degradation,” Bull. Mater. Sci., vol. 43, no. 1, 2020, doi: 10.1007/s12034-019-2016-9.
[32] M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, “Synthesis and catalytic activity of TiO 2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation,” Int. J. Electrochem. Sci., vol. 7, no. 6, pp. 4871–4888, 2012.
[33] L. White, Y. Koo, Y. Yun, and J. Sankar, “TiO2 deposition on AZ31 magnesium alloy using plasma electrolytic oxidation,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/319437.
[34] N. Wang, Z. L. Liu, M. W. Shi, and J. Y. Yu, “Effect of the filled titanium dioxide particulates on optical properties of polyester films,” J. Text. Inst., vol. 108, no. 5, pp. 776–782, 2017, doi: 10.1080/00405000.2016.1190497.
[35] S. Ok, “Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils,” Grasas y Aceites, vol. 68, no. 1, p. 173, 2017, doi: 10.3989/gya.0678161.
[36] M. Saeedian, M. Mahjour-Shafiei, E. Shojaee, and M. R. Mohammadizadeh, “Specific heat capacity of TiO 2 nanoparticles,” J. Comput. Theor. Nanosci., vol. 9, no. 4, pp. 616–620, 2012, doi: 10.1166/jctn.2012.2070.
[37] R. Sanctuary et al., “Complex specific heat capacity of two nanocomposite systems,” Thermochim. Acta, vol. 445, no. 2, pp. 111–115, 2006, doi: https://doi.org/10.1016/j.tca.2005.05.024.
[38] A. Kaushik, D. Ahuja, and V. Salwani, “Synthesis and characterization of organically modified clay/castor oil based chain extended polyurethane nanocomposites,” Compos. Part A Appl. Sci. Manuf., vol. 42, no. 10, pp. 1534–1541, 2011, doi: 10.1016/j.compositesa.2011.07.009.
[39] C. Lorusso et al., “Characterization of polyurethane foam added with synthesized acetic and oleic-modified TiO2Nanocrystals,” Nanomater. Nanotechnol., vol. 5, pp. 1–7, 2015, doi: 10.5772/61275.
[40] W. Zhao, M. Li, and H. X. Peng, “Functionalized MWNT-doped thermoplastic polyurethane nanocomposites for aerospace coating applications,” Macromol. Mater. Eng., vol. 295, no. 9, pp. 838–845, 2010, doi: 10.1002/mame.201000080.
[41] B. He, B. Mortazavi, X. Zhuang, and T. Rabczuk, “Modeling Kapitza resistance of two-phase composite material,” Compos. Struct., vol. 152, pp. 939–946, 2016, doi: https://doi.org/10.1016/j.compstruct.2016.06.025.
[42] H. Limami, I. Manssouri, K. Cherkaoui, M. Saadaoui, and A. Khaldoun, “Thermal performance of unfired lightweight clay bricks with HDPE & PET waste plastics additives,” J. Build. Eng., vol. 30, p. 101251, 2020, doi: 10.1016/j.jobe.2020.101251.
How to Cite
Gordillo Delgado, F., & Hernández Zarta, H. H. (2020). Thermal Characteristics of TIO2 Nanocomposite in a Polyurethane Matrix Made with Castor Oil. Revista Ingenierías Universidad De Medellín, 20(39), 147-165. https://doi.org/10.22395/rium.v20n39a9

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in