Soil salinization is one of the main constraints for food production. These processes occur mainly in irrigated areas, due to natural conditions and inadequate fertilization and irrigation practices. The objective of this article was to generate a model to identify and spatialize the levels of vulnerability to soluble phase salinization in the irrigation districts of Colombia as a complementary tool for the management of soil salinization risk. Two tools were integrated to achieve the objective. On the one hand, the multi-criteria
analysis method called Analytic Hierarchy Process (AHP) was applied to assign weights to the analysis parameters and build the Soil Vulnerability to Salinization Index (SVSS), and on the other hand, geographic information systems (GIS) were applied to spatialize the analysis parameters and the SVSS, as well as to define the homogeneous vulnerability zones. Finally, the model was applied to a case study. The resulting model considered vulnerability parameters. The most important are Aridity Index, Soil Texture and Fertilization Practices. On a second level are Drainage Infrastructure and Depth of the Water Level. Other factors considered were Slope of the land, Irrigation Water Application Efficiency and Irrigation Water Distribution Pattern. In the case study it was found that 71.8 % of the territory presents Medium Vulnerability and 27.9 % High Vulnerability. The determining parameters of these results were the low efficiencies of irrigation water application, inadequate fertilization practices, clayey textures and lack of subsurface drainage systems.


  1. P. M. Kopittke, N. W. Menzies, P. Wang, B. A. McKenna, and E. Lombi, “Soil and the intensification of agriculture for global food security,” Environ. Int., vol. 132, no. May, p. 105078, 2019, doi: 10.1016/j.envint.2019.105078.
  2. A. Litalien and B. Zeeb, “Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation,” Sci. Total Environ., vol. 698, 2020, doi: 10.1016/j.scitotenv.2019.134235.
  3. S. Yadav, M. Irfan, A. Ahmad, and S. Hayat, “Causes of salinity and plant manifestations to salt stress: A review,” J. Environ. Biol., vol. 32, no. 5, pp. 667–685, 2011.
  4. FAO, Handbook for saline soil management. Food and Agriculture Organization of the United Nations and Lomosonov Moscow State University, 2018.
  5. N. Yan, P. Marschner, W. Cao, C. Zuo, and W. Qin, “Influence of salinity and water content on soil microorganisms,” Int. Soil Water Conserv. Res., vol. 3, no. 4, pp. 316–323, 2015, doi: 10.1016/j.iswcr.2015.11.003.
  6. A. Singh, “Soil salinization and waterlogging: A threat to environment and agricultural sustainability,” Ecol. Indic., vol. 57, no. October, pp. 128–130, 2015, doi: 10.1016/j.ecolind.2015.04.027.
  7. F. Bouksila, A. Bahri, R. Berndtsson, M. Persson, J. Rozema, and S. E. A. T. M. Van der Zee, “Assessment of soil salinization risks under irrigation with brackish water in semiarid tunisia,” Environ. Exp. Bot., vol. 92, no. January, pp. 176–185, Aug. 2013, doi: 10.1016/j.envexpbot.2012.06.002.
  8. D. Wichelns and M. Qadir, “Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater,” Agric. Water Manag., vol. 157, pp. 31–38, 2015, doi: 10.1016/j.agwat.2014.08.016.
  9. A. Singh, “Poor-drainage-induced salinization of agricultural lands: Management through structural measures,” Land use policy, vol. 82, no. December 2018, pp. 457–463, 2019, doi: 10.1016/j.landusepol.2018.12.032.
  10. J. A. Acosta, A. Faz, B. Jansen, K. Kalbitz, and S. Martínez-Martínez, “Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain,” J. Arid Environ., vol. 75, no. 11, pp. 1056–1066, 2011, doi: 10.1016/j.jaridenv.2011.05.006.
  11. T. G. Ammari et al., “Soil salinity changes in the jordan valley potentially threaten sustainable irrigated agriculture,” Pedosphere, vol. 23, no. 3, pp. 376–384, 2013, doi: 10.1016/S1002-0160(13)60029-6.
  12. A. Colantoni, C. Ferrara, L. Perini, and L. Salvati, “Assessing trends in climate aridity and vulnerability to soil degradation in Italy,” Ecol. Indic., vol. 48, no. January, pp. 599–604, 2015, doi: 10.1016/j.ecolind.2014.09.031.
  13. R. Villafañe, “Sosalriego: Un procedimiento para diagnosticar los riesgos de sodificación y salinización del suelo con el agua de riego,” Bioagro, vol. 23, no. 1, pp. 57–64, 2011.
  14. S. Zewdu, K. V. Suryabhagavan, and M. Balakrishnan, “Geo-spatial approach for soil salinity mapping in Sego Irrigation Farm, South Ethiopia,” J. Saudi Soc. Agric. Sci., vol. 16, no. 1, pp. 16–24, 2017, doi: 10.1016/j.jssas.2014.12.003.
  15. D. Zhou, Z. Lin, L. Liu, and D. Zimmermann, “Assessing secondary soil salinization risk based on the PSR sustainability framework,” J. Environ. Manage., vol. 128, no. October, pp. 642–654, 2013, doi: 10.1016/j.jenvman.2013.06.025.
  16. G. J. Hoffman and M. C. Shannon, “Salinity,” in Microirrigation for Crop Production - Design, Operation, and Management, 1st ed., vol. 13, F. R. Lamm, J. E. Ayars, and F. S. Nakayama, Eds. ELSEIVER, 2007, pp. 131–160.
  17. X. Wang, J. Yang, G. Liu, R. Yao, and S. Yu, “Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution,” Agric. Water Manag., vol. 149, pp. 44–54, 2015, doi: 10.1016/j.agwat.2014.10.027.
  18. IDEAM, CAR, and UDCA, Protocolo para la identificación y evaluación de la degradación de suelos por salinización. Bogotá, DC, 2017.
  19. N. Urrutia, Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district, 1 ed. Wageningen: Balkema Publishers, 2006.
  20. A. Utset and M. Borroto, “A modeling-GIS approach for assessing irrigation effects on soil salinisation under global warming conditions,” Agric. Water Manag., vol. 50, no. 1, pp. 53–63, Aug. 2001, doi: 10.1016/S0378-3774(01)00090-7.
  21. J. de Paz, F. Visconti, R. Zapata, and J. Sánchez, “Integration of two simple models in a geographical information system to evaluate salinization risk in irrigated land of the Valencian Community, Spain,” Soil Use Manag., vol. 20, no. 333–342, 2004.
  22. M. Masoudi, A. M. Patwardhan, and S. D. Gore, “A new methodology for producing of risk maps of soil salinity. Case study: Payab Basin, Iran,” J. Appl. Sci. Environ. Manag., vol. 10, no. 3, pp. 9–13, 2006, doi: 10.4314/jasem.v10i3.17312.
  23. J. M. Peragón, A. Delgado, J. D. Rodríguez, and F. J. Pérez-Latorre, “A GIS-based decision tool for reducing salinization risks in olive orchards,” Agric. Water Manag., vol. 166, pp. 33–41, 2016, doi: 10.1016/j.agwat.2015.12.005.
  24. N. Chartres, L. A. Bero, and S. L. Norris, “A review of methods used for hazard identification and risk assessment of environmental hazards,” Environ. Int., vol. 123, no. November 2018, pp. 231–239, 2019, doi: 10.1016/j.envint.2018.11.060.
  25. MADS, Política para la Gestión Sostenible del Suelo. Bogota D.C.: Ministerio de Ambiente y Desarrollo Sostenible, 2016.
  26. A. Echeverri-Sánchez, C. Facundo Pérez, P. Angulo-Rojas, and N. Urrutia-Cobo, “A Methodological Approach for Assessing Soil Salinity Hazard in Irrigated Areas. Case Study: The rut Irrigation District, Colombia,” Rev. Ing. Univ. Medellín, vol. 15, no. 29, pp. 13–26, 2016, doi: 10.22395/rium.v15n29a1.
  27. J. Malczewski and C. Rinner, Multicriteria Decision Analysis in Geographic Information Science. Lon, 2015.
  28. T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv. Sci., vol. 1, no. 1, p. 83, 2008, doi: 10.1504/IJSSCI.2008.017590.
  29. T. L. Saaty, “How to make a decision: The analytic hierarchy process,” Interfaces (Providence)., vol. 24, no. 6, pp. 19–43, 1994, doi: 10.1016/0377-2217(90)90057-I.
  30. R. K. Jaiswal, N. C. Ghosh, R. V. Galkate, and T. Thomas, “Multi Criteria Decision Analysis (MCDA) for Watershed Prioritization,” Aquat. Procedia, vol. 4, no. Icwrcoe, pp. 1553–1560, 2015, doi: 10.1016/j.aqpro.2015.02.201.
  31. L. Abdullah and C. W. Adawiyah, “Simple Additive Weighting Methods of Multi criteria Decision Making and Applications: A Decade Review,” Int. J. Inf. Process. Manag., vol. 5, no. 1, pp. 39–49, 2014.
  32. C. Kahraman, Fuzzy Multi - Criteria Decision Making, vol. 53, no. 9. Istambul: Springer International Publishing, 2008.
  33. IGAC and CVC, Levantamiento de Suelos y Zonificación de Tierras del Departamento del Valle del Cauca. Cali, Colombia, 2004.
  34. R. Lora, “PROPIEDADES QUÍMICAS DEL SUELO,” in Ciencia del suelo. Principios básicos, 2 ed., H. Burbano and F. Silva, Eds. Bogota: Sociedad Colombiana de la Ciencia del Suelo, 2013, pp. 73–138.
  35. B. R. Hanson, S. R. Grattan, and A. Fulton, Agriculural Salinity and Drainage. California: Water Management Series publication 3375 ORDERING, 2006.
  36. Z. Wen-tai, W. U. Hong-qi, G. U. Hai-bin, F. Guang-long, W. Ze, and S. Jian-dong, “Variability of Soil Salinity at Multiple Spatio-Temporal Scales and the Related Driving Factors in the Oasis Areas of Xinjiang , China,” Pedosph. An Int. J., vol. 24, no. 6, pp. 753–762, 2014, doi: 10.1016/S1002-0160(14)60062-X.
  37. USDA, “USDA Textural Soil Classification,” in Soil Mechanics Level I Module 3 - USDA Textural Soil Classification, United States Deparment of Agriculture, 1987, pp. 1–33.
  38. R. Guerrero, Manual técnico. Propiedades Generales de los Fertilizantes. Barranquilla, 2004.
  39. IGAC and CVC, “Levantamiento semidetallado de suelos Escala 1:25000. Convenio Interadministrativo 4488 IGAC – 087 CVC de 2014.,” Cali, Colombia, 2016.
  40. G. P. O. Reddy and S. K. Singh, Geospatial Technologies in Land Resources Mapping, Monitoring, and Management: An Overview. Springer International Publishing, 2018.
  41. M. C. M. Cabrera, J. A. A. Anache, C. Youlton, and E. Wendland, “Performance of evaporation estimation methods compared with standard 20 m2 tank,” Rev. Bras. Eng. Agric. e Ambient., vol. 20, no. 10, pp. 874–879, 2016, doi: 10.1590/1807-1929/agriambi.v20n10p874-879.
  42. W. Bajjali, Arcgis for Environmental and Water Issues. Springer International Publishing, 2018.
  43. J. Triantafilis, I. O. A. Odeh, B. Warr, and M. F. Ahmed, “Mapping of salinity risk in the lower Namoi valley using non-linear kriging methods,” Agric. Water Manag., vol. 69, no. 3, pp. 203–231, Oct. 2004, doi: 10.1016/j.agwat.2004.02.010.
How to Cite


Download data is not yet available.

Send mail to Author

Send Cancel

We are indexed in