EVALUATION OF FAULTS IN THE SQUIRREL CAGE THREE-PHASE INDUCTION MOTORS

Daniel Maestre-Cambronel | Bio
Universidad del Atl´antico
Jhan Piero Rojas | Bio
Universidad Francisco de Paula Santander
Jorge Duarte-Forero
Universidad del Atlántico

Abstract

Induction motors have played a central role in the techno-economic development of modern industries and electric power generation. However, the presence of recurring failures hinders a cost-effective performance and leads to catastrophic damage. Therefore, the present study proposed an assessment to investigate the influence of two types of failures in induction motors, namely failure due to broken bars in the rotor and defects in the connection between the rotor bars and the end ring. Accordingly, a three-phase induction motor was evaluated under different failure conditions that modified the operational torque and rotational speed. The results indicated that both types of failures magnify both the core and copper power losses by up to 13.3 % and 8 %, respectively, compared to the healthy condition. On the other hand, an efficiency reduction
between 1.94 % to 3.41 % is an indication of failure progression. Finally, the appearance of harmonics 3 and 7, and the intensified magnitude of harmonic 5, represent a clear sign of failure occurrence related to rotor bars
and defects in the connection to the end ring. In conclusion, the proposed methodology proved to be an adequate tool to predict failure appearance, which has a direct impact on extending the lifetime of induction motors.

References

  1. R. A. Pardo and J. M. López-Lezama, “Revisión de metodologías de arranque óptimo de generación para el restablecimiento de sistemas de potencia considerando fuentes de energía convencionales y renovables no convencionales,” Rev. Ing. Univ. Medellín, vol. 19, no. 36, pp. 187–204, Jun. 2020, doi: 10.22395/rium.v19n36a9.
  2. J. Duarte Forero, L. López Taborda, and A. Bula Silvera, “Characterization of the performance of centrifugal pumps powered by a diesel engine in dredging applications,” Int. Rev. Mech. Eng., vol. 13, no. 1, pp. 11–20, Jan. 2019, doi: 10.15866/ireme.v13i1.16690.
  3. L. Obregon, G. Valencia, and J. Duarte Forero, “Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD,” Int. Rev. Model. Simulations, vol. 12, no. 4, pp. 245–252, Aug. 2019, doi: 10.15866/iremos.v12i4.18009.
  4. G. V. Ochoa, C. Isaza-Roldan, and J. Duarte Forero, “Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential,” Energies, vol. 13, no. 6, pp. 1317–1338, Mar. 2020, doi: 10.3390/en13061317.
  5. J. Portos, K. Dean, B. Parker, and J. Cannon, “Most Common Mechanisms and Reasons for Electric Motor Failures in Industry,” IEEE IAS Pulp, Pap. For. Ind. Conf., pp. 1–11, Jun. 2019, doi: 10.1109/PPFIC43189.2019.9052384.
  6. A. J. Bazurto, E. C. Quispe, and R. C. Mendoza, “Causes and failures classification of industrial electric motor,” IEEE ANDESCON, pp. 1–4, Jan. 2017, doi: 10.1109/ANDESCON.2016.7836190.
  7. A. H. Bonnett, “Root cause methodology for induction motors: A step-by-step guide to examining failure,” IEEE Ind. Appl. Mag., vol. 18, no. 6, pp. 50–62, 2012, doi: 10.1109/ MIAS.2012.2208487.
  8. T. Aroui, Y. Koubaa, and A. Toumi, “Magnetic coupled circuits modeling of induction machines oriented to diagnostics,” Leonardo J. Sci., vol. 7, no. 13, pp. 103–121, 2008.
  9. S. O. Gulhane and M. R. Salodkar, “Review of Detection of Faults in Induction Motor,” Int. Res. J. Eng. Technol., vol. 3, no. 8, pp. 1771–1774, 2016.
  10. Z. Medrano Hurtado, C. P. Tello, and J. G. Sarduy, “A review on location, detection and fault diagnosis in induction machines,” J. Eng. Sci. Technol. Rev., vol. 8, no. 3, pp. 185–195, Jun. 2015, doi: 10.25103/jestr.083.25.
  11. K. S. Gaeid and H. W. Ping, “Wavelet fault diagnosis and tolerant of induction motor: A review,” Int. J. Phys. Sci., vol. 6, no. 3, pp. 358–376, 2011, doi: 10.5897/IJPS10.632.
  12. A. Sharma, S. Chatterji, L. Mathew, and M. Khan, “A Review of Fault Diagnostic and Monitoring Schemes of Induction Motors,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 3, pp. 1145–1152, 2015, doi: 10.23919/ChiCC.2018.8484044.
  13. S. Partha Sarathee Bhowmik1, “Fault diagnostic and monitoring methods of induction motor: a review,” Int. J. Appl. Control. Electr. Electron. Eng., vol. 1, pp. 1–18, 2018, doi: 10.5281/zenodo.1479976.
  14. H. H. Hanafy, T. M. Abdo, and A. A. Adly, “2D finite element analysis and force calculations for induction motors with broken bars,” Ain Shams Eng. J., vol. 5, no. 2, pp. 421–431, Jun. 2014, doi: 10.1016/j.asej.2013.11.003.
  15. M. Akar and I. Cankaya, “Broken rotor bar fault detection in inverter-fed squirrel cage induction motors using stator current analysis and fuzzy logic,” Turkish J. Electr. Eng. Comput. Sci., vol. 20, pp. 1077–1089, 2012, doi: 10.3906/elk-1102-1050.
  16. M. A. Juneghani, B. K. Boroujeni, and M. Abdollahi, “Determination of number of broken rotor bars in squirrel-cage induction motors using adaptive neuro-fuzzy interface system,” Res. J. Appl. Sci. Eng. Technol., vol. 4, pp. 3399–3405, 2012.
  17. A. Usudum and D. Bolukbas, “The performance analyses of an induction motor due to specified fault conditions,” in 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), Nov. 2013, pp. 273–277, doi: 10.1109/ELECO.2013.6713846.
  18. M. O. Mustafa, G. Nikolakopoulos, T. Gustafsson, and D. Kominiak, “A fault detection scheme based on minimum identified uncertainty bounds violation for broken rotor bars in induction motors,” Control Eng. Pract., vol. 48, pp. 63–77, 2016, doi: https://doi.org/10.1016/j.conengprac.2015.12.008.
  19. S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical motors - A review,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719–729, Dec. 2005, doi: 10.1109/TEC.2005.847955.
  20. D. Svechkarenko, W. Chen, Y. Liu, and O. Liukkonen, “Finite element analysis of end ring impedance in squirrel cage induction machines,” in 2013 IEEE Energy Conversion Congress and Exposition, Sep. 2013, pp. 254–259, doi: 10.1109/ECCE.2013.6646708.
  21. S. T. Chang, M. K. Liu, C. Y. Lan, and W. T. Hsu, “Lifetime prediction for bearings in induction motor,” Proc. - 2019 IEEE Int. Conf. Ind. Cyber Phys. Syst. ICPS 2019, pp. 467–471, May 2019, doi: 10.1109/ICPHYS.2019.8780366.
  22. J. Tulicki, M. Sulowicz, and N. Praglowska-Rylko, “Application of the Bispectral analysis in the diagnosis of cage induction motors,” in 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), May 2016, pp. 1–8, doi: 10.1109/WZEE.2016.7800196.
  23. A. Glowacz, W. Glowacz, Z. Glowacz, and J. Kozik, “Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals,” Measurement, vol. 113, pp. 1–9, Jan. 2018, doi: 10.1016/j.measurement.2017.08.036.
  24. S. Prainetr, S. Wangnippanto, and S. Tunyasirut, “Detection mechanical fault of induction motor using harmonic current and sound acoustic,” in 2017 International Electrical Engineering Congress (iEECON), Mar. 2017, pp. 1–4, doi: 10.1109/IEECON.2017.8075725.
  25. V. P. Mini and S. Ushakumari, “Rotor fault detection and diagnosis of induction motor using fuzzy logic,”AMSE JOURNALS 2014-Series Model. A, vol. 87, no. 2, pp. 19–40, 2014.
  26. J. Rangel-Magdaleno, H. Peregrina-Barreto, J. Ramirez-Cortes, and I. Cruz-Vega, “Hilbert spectrum analysis of induction motors for the detection of incipient broken rotor bars,” Measurement, vol. 109, pp. 247–255, Oct. 2017, doi: 10.1016/j.measurement.2017.05.070.
  27. L. Maraaba, Z. Al-Hamouz, and M. Abido, “An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors,” Energies, vol. 11, no. 3, p. 653, Mar. 2018, doi: 10.3390/en11030653.
  28. P. Gangsar and R. Tiwari, “Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review,” Mechanical Systems and Signal Processing, vol. 144. Academic Press, p. 106908, Oct. 2020, doi: 10.1016/j.ymssp.2020.106908.
  29. ATO, “Three Phase Induction Motor Catalogue.” https://www.ato.com/Content/doc/3-phaseinduction- motor-catalog.pdf (accessed Apr. 04, 2022).
  30. FLUKE, “Fluke 43B Analizador eléctrico avanzado.” https://www.ujaen.es/departamentos/ ingele/sites/departamento_ingele/files/uploads/manualfluke43b.pdf (accessed Apr. 04, 2022).
  31. UNI-T, “UT58 Series General Digital Multimeters.” https://cdn.sos.sk/productdata/c9/8f/5b9ff998/ut-58-c.pdf (accessed Apr. 04, 2022).
  32. C. K. Mechefske, “Objective machinery fault diagnosis using fuzzy logic,” Mech. Syst. Signal Process., vol. 12, no. 6, pp. 855–862, Nov. 1998, doi: 10.1006/mssp.1998.0173.
  33. Y. Xie, Z. Wang, X. Shan, and Y. Li, “Investigation of rotor thermal stress in squirrel cage induction motor with broken bar faults,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 35, no. 5, pp. 1865–1886, Sep. 2016, doi: 10.1108/COMPEL-10-2015-0372.
  34. I. P. E. Society, “IEEE standard test procedure for polyphase induction motors and generators,” IEEE Stand., 1991.
How to Cite
Maestre-Cambronel, D., Rojas , J. P., & Duarte-Forero, J. (2021). EVALUATION OF FAULTS IN THE SQUIRREL CAGE THREE-PHASE INDUCTION MOTORS. Revista Ingenierías Universidad De Medellín, 21(40), 126-142. https://doi.org/10.22395//rium.v21n40a8

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in