DETECTION OF OPERATIONAL FAILURES WITH ARTIFICIAL NEURAL NETWORKS: APPLICATION TO THE TENNESSEE EASTMAN PROCESS

Giovanni Morales | Bio
Universidad Industrial de Santander
Sebastian Reyes Angarita
Universidad Industrial de Santander

Abstract

The purpose of this article is to compare results of fault detection for the Tennessee Eastman (TE) process with the application of artificial neural networks (ANN). The Neuralnet library of the open-source program R, as well as the Keras library of the open-source program Python were used for the training of ANN. The TE process simulation data were down loaded from Harvard University’s server, and subsequently analyzed, defining the trends in the operational variables during the appearance of failures. With the database, the training and validation of different ANN structures were developed, considering the parameters number of hidden neurons, activation function, and number of hidden layers. According to the results, the training and validation of the ANNs with the Neuralnet library yielded a lower performance in fault detection than that obtained with the Keras library. The ANN with the best performance in detecting failures in the TE process was obtained by the application of the Keras library. This ANN considered 52 input variables, 11 neurons in the hidden layer, and one neuron in the output layer, using a logistic function (ANN represented as 52:11:1 logistic) and reporting a prediction efficiency of 92% for the detection of faults with an external test set, which is convenient for future implementation in industrial processes.

References

  1. J. A. Ramírez, H. O. Sarmiento, and J. M. López, “Diagnóstico de Fallas En Procesos Industriales Mediante Inteligencia Artificial”. Revista Espacios, vol. 39, no. 24, pp.16, 2018.
  2. M. A. Turk, and A. Mishra. “Process safety management: Going beyond functional safety”. Hydrocarbon Processing, vol. 92, no. 3, pp. 55-63, March 2013.
  3. R. Rivas, P. Zubieta, and H. Garcini, “Detección y Diagnóstico Automático de Fallos En Procesos Industriales”. Ingeniería electrónica, Automática y Comunicaciones, volumen XXIII, no. 3, 2002.
  4. E. E. Tarifa, and S. L. Martinez. 2007, “Diagnostico de Fallas Con Redes Neuronales. Parte 1: Reconocimiento de Trayectorias”. Revistas electrónicas UN ingeniería e Investigación, vol. 27, no.1, pp. 68-76, Abril 2007.
  5. H. Hassanpour, B. Corbett, and P. Mhaskar, “Artificial Neural Network-Based Model Predictive Control Using Correlated Data”. Industrial & Engineering Chemistry Research, vol. 61, no. 8, pp. 3075–3090, 2022, https://doi.org/10.1021/acs.iecr.1c04339.
  6. Y. Shin, R Smith, and S. Hwang, “Development of model predictive control system using an artificial neural network: A case study with a distillation column”. Journal of Cleaner Production, vol. 277, pp. 124124, 2020, https://doi.org/10.1016/j.jclepro.2020.124124.
  7. R. Arunthavanathan, F. Khan, S. Ahmed, S. Imtiaz, and R. Rusli, “Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique”. Computers & Chemical Engineering, vol. 134, pp. 106697, 2019, https://doi.org/10.1016/j.compchemeng.2019.106697.
  8. A. Melo, M.M. Câmara, J.C. Pinto, “Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey”. Processes, Vol. 12, no. 2, pp. 251, 2024, https://doi.org/10.3390/pr12020251
  9. S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process”. Journal of Process Control, Vol. 22, no. 9, pp. 1567–1581, 2012, https://doi.org/10.1016/j.jprocont.2012.06.009
  10. J. Yu, Y. Zhang, “Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review”. Neural Comput & Applic, Vol. 35, pp. 211–252, 2023, https://doi.org/10.1007/s00521-022-08017-3
  11. D. Divya, B. Marath, M.B. Santosh Kumar, “Review of fault detection techniques for predictive maintenance”. Journal of Quality in Maintenance Engineering, Vol. 29, no. 2, pp. 420-441, 2023, https://doi.org/10.1108/JQME-10-2020-0107
  12. L.H. Chiang, E.L. Russell, R.D. Braatz, “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis”. Chemometrics and Intelligent Laboratory Systems, Vol. 50, no. 2, pp. 243–252, 2000, https://doi.org/10.1016/s0169-7439(99)00061-1
  13. Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A.K. Nandi, “Applications of machine learning to machine fault diagnosis: A review and roadmap”. Mechanical Systems and Signal Processing, Vol. 138, 106587, 2020, https://doi.org/10.1016/j.ymssp.2019.106587
  14. A. Yadav, and Y, Dash, “An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination”. Advances in Artificial Neural Systems, vol. 1, pp. 6, 2014, http://dx.doi.org/10.1155/2014/230382
  15. J. Hong, J. Qu, W. Tian, Z. Cui, Z. Liu, Y. Lin, and C. Li, “Identification of Unknown Abnormal Conditions in Catalytic Cracking Process Based on Two-Step Clustering Analysis and Signed Directed Graph”. Processes, vol. 9, no.11, pp. 2055, 2021, https://doi.org/10.3390/pr9112055
  16. G. Taira, S. Park, A. Zanin, and C. Porfirio, “Fault detection in a fluid catalytic cracking process using Bayesian recurrent neural network”. IFAC PapersOnLine, vol. 55, no.7, pp. 715–720, 2022, https://doi.org/10.1016/j.ifacol.2022.07.528
  17. V. Venkatasubramanian, K. Chan, “A neural network methodology for process fault diagnosis”. AIChE Journal, vol. 35, no 12, p. 1993-2002, 1989, https://doi.org/10.1002/aic.690351210
  18. L. Chiang, E. Russell, and R. Braatz, “Fault Detection and Diagnosis in Industrial Systems”, Londres, Springer Science & Business Media, 2000, https://doi.org/10.1007/978-1-4471-0347-9
  19. J. Hong, J. Qu, W. Tian, Z. Cui, Z. Liu, Y. Lin, and C. Li, “Identification of Unknown Abnormal Conditions in Catalytic Cracking Process Based on Two-Step Clustering Analysis and Signed Directed Graph”. Processes, vol. 9, no.11, pp. 2055, 2021, https://doi.org/10.3390/pr9112055
  20. U. Sarwar, M. Muhammad, A. A. Mokhtar, R. Khan, P. Behrani, S. Kaka, “Hybrid intelligence for enhanced fault detection and diagnosis for industrial gas turbine engine”. Results in Engineering, vol. 21, 101841, 2024, https://doi.org/10.1016/j.rineng.2024.101841
  21. A.O. e Souza, M.B. de Souza, F.V. da Silva, “Enhancing fault detection and diagnosis systems for a chemical process: a study on convolutional neural networks and transfer learning”. Evolving Systems, vol. 15, pp. 611-633, 2024, https://doi.org/10.1007/s12530-023-09523-y
  22. S. Lu, J. Lu, K. An, X. Wang, Q. He, “Edge Computing on IoT for Machine Signal Processing and Fault Diagnosis: A Review”. IEEE Internet of Things Journal, vol. 10, no. 13, pp. 1109311116, 2023, https://doi.org/10.1109/JIOT.2023.3239944
  23. F. Günther, and S. Fritsch. “Neuralnet: training of neural networks”. R Journal, vol. 2, no. 1, pp. 30–38, 2010, https://doi.org/10.32614/RJ-2010-006
  24. G. Iannace, G. Ciaburro, and A. Trematerra, “Neural Networks Model to Detect Wind Turbine Dynamics”. International Journal of Automation and Smart Technology, 2020, vol. 10, no 1, pp. 145-152, 2020, https://doi.org/10.5875/ausmt.v10i1.2225
  25. J.-L. Kang, “Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks”. Journal of the Taiwan Institute of Chemical Engineers, vol. 112, pp. 137-151, 2020, https://doi.org/10.1016/j.jtice.2020.06.016.
  26. S. Chen, J. Yu, and S. Wang, “One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes”. Journal of Process Control, vol.87, pp.54–67, 2020, https://doi.org/10.1016/j.jprocont.2020.01.004.
  27. S. Sano, T. Kadowaki, K. Tsuda, and S. Kimura, “Application of Bayesian Optimization for Pharmaceutical Product Development”. Journal of Pharmaceutical Innovation, vol. 15, pp. 333-343. 2020, https://doi.org/10.1007/s12247-019-09382-8.
  28. A. Zolfaghari, and M. Izadi, “Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network”. Journal Pressure Vessel Technology, vol. 142, no. 3, pp. 031303, 2020, https://doi.org/10.1115/1.4045729.
  29. M. Fernández-Delgado, M. Sirsat, E. Cernadas, S. Alawadi, S. Barro, and M. Febrero-Bande, “An extensive experimental survey of regression methods”. Neural Networks, vol. 111, pp. 11–34, 2019, https://doi.org/10.1016/j.neunet.2018.12.010
  30. H. González, and H. Martínez, “Redes Neuronales Artificiales: Fundamentos, modelos y aplicaciones”, Madrid, 2000.
  31. P. Isasi, and I. Galván, “Redes de neuronas artificiales. Un Enfoque Práctico”, Editorial Pearson Educación SA Madrid España, 2004.
  32. J. J. Downs, and E. Vogel, “A plant-wide industrial process control problem”. Com puters & Chemical Engineering, vol. 17, no.3, pp. 245–255, March 1993, https://doi.org/10.1016/0098-1354(93)80018-I.
  33. E. Andersen, I. Udugama, K. Gernaey, C. Bayer, and M. Kulahci, “Big Data Generation for Time Dependent Processes: The Tennessee Eastman Process for Generating Large Quantities of Process Data”. Computer Aided Chemical Engineering , vol. 48, pp. 1309–1314, 2020, https://doi.org/10.1016/B978-0-12-823377-1.50219-6.
  34. S. Yin, S. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process”. Journal of Process Control, vol. 22, no.9, pp. 1567–1581, 2012, https://doi.org/10.1016/j.jprocont.2012.06.009.
  35. S. Heo, and J. Lee, “Fault detection and classification using artificial neural networks”. IFAC PapersOnLine, vol. 51, no. 18, pp. 470–475, 2018, https://doi.org/10.1016/j.ifacol.2018.09.380.
  36. N. Basha, C. Kravaris, H. Nounou, and M. Nounou, “Bayesian-optimized Gaussian process based fault classification in industrial processes”. Computers Chemical Engineering, vol. 170, pp. 108126, 2023, https://doi.org/10.1016/j.compchemeng.2022.108126.
  37. C. Rieth, B. Amsel, R Tran, and M. Cook, “Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation”. Harvard Dataverse: vol. 1, 2017, https://doi.org/10.7910/DVN/6C3JR1
How to Cite
Morales, G., & Reyes Angarita, S. (2024). DETECTION OF OPERATIONAL FAILURES WITH ARTIFICIAL NEURAL NETWORKS: APPLICATION TO THE TENNESSEE EASTMAN PROCESS. Revista Ingenierías Universidad De Medellín, 23(44). https://doi.org/10.22395/rium.v23n44a1

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in