IDENTIFICATION OF A UNIVERSITY COMMUNITY ON FACEBOOK FOR THE DISSEMINATION OF SCIENCE AND CULTURE
Main Article Content
Abstract
Social network analysis is a method that allows the identification and exa mination of structures of various types of data, objects, or user groups, as well as the interactions created by a community and the relationships that exist between them. To characterize the virtual community of a higher education institution, the Fruchterman-Reingold, Yifan Hu, and Noverlap algorithms were applied using the Gephi tool for the analysis and modeling of 30 Facebook fan pages dedicated to the promotion of culture and the dissemination of science. The results show a relationship with the direction and number of edges for each of the 30 nodes for each algorithm applied. The focus of the analysis provided information about the dynamics of the virtual university community, allowing a visual understanding of how members connect and communicate within the Facebook social network.
Article Details
References
Froment F, García-González AJ, Cabero J. The relationship of Twitter with teacher credibility and motivation in university students. Comunicar, 2022 Apr; 30 (71): 1-12. doi: 10.3916/ C71-2022-10
Velázquez-Solis PE, Flores-Ríos BL, Astorga-Vargas MA, Ibarra-Esquer JE, González Navarro FF, Aguilar Vera RA. Analysis of scientific dissemination posts on Facebook from a social media approach. In: CISTI’2022 - 17a Conferencia Ibérica de Sistemas y Tecnologías de Información, 2022.
Hollenbeck CR, Kaikati AM. Consumers’ use of brands to reflect their actual and ideal selves on Facebook. International Journal of Research in Marketing, 2012 Dec; 29 (4): 395-405. doi: 10.1016/j.ijresmar.2012.06.002
Choi J-A, Lim K. Identifying machine learning techniques for classification of target advertising. ICT Express, 2020 Sep; 6 (3): 175-180. doi: 10.1016/j.icte.2020.04.012
Biswal SK, Muley P. Data Mining in Social Network Analysis. International Journal of Innovations in Engineering Research and Technology, 2018 May; 5 (5).
Pudjajana AM, Manongga D, Iriani A, Purnomo HD. Identification of Influencers in Social Media using Social Network Analysis (SNA). In: 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2018: 400-404. doi: 10.1109/ISRITI.2018.8864458
Tsugawa S. A survey of social network analysis techniques and their applications to socially aware networking. IEICE Transactions and Communications, 2019 Jan; E102.B (1): 17-39. doi: 10.1587/transcom.2017EBI0003
Brito S, Basualto Porra L, Reyes Ochoa L. Inclusión social/educativa, en clave de educación superior. Revista Latinoamericanda de Educación Inclusiva, 2019 Dic; 13 (2): 157-172. doi: 10.4067/s0718-73782019000200157
Brito J, Laaser W, Toloza EA. El uso de redes sociales por parte de las universidades a nivel institucional. Un estudio comparativo. RED: Revista de Educación a Distancia, 2012; (32): 6-38.
Dey P, Roy S. A Comparative Analysis of Different Social Network Parameters Derived from Facebook Profiles. In: Satapathy S, Raju K, Mandal J, Bhateja V, editors. Proceedings of the Second International Conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing, vol 379. New Delhi: Springer, 2016: 125-132. doi: 10.1007/978-81-322-2517-1_13.
Akhtar N. Social Network Analysis Tools. In: Proceedings of 2014 4th International Conference on Communication Systems and Network Technologies, CSNT 2014, 2014 April 7-9: 388-392. doi: 10.1109/CSNT.2014.83
Wahyuningtyas R, Alamsyah A, Diliana NA. Mapping Digital Talent Based on Competency using Social Network Analysis. In: Proceedings of 2021 2nd International Conference on ICT for Rural Development (IC-ICTRuDev), 2021 Oct 27-28. doi: 10.1109/IC-ICTRuDev50538.2021.9656521
Hanneman RA, Riddle M. Introduction to Social Network Methods [online]. Riverside, CA: University of California, 2005. http://www.faculty.ucr.edu/~hanneman/nettext/
Gupta S, Khatri B, Gupta T, Kumar N. Modified partition integration method for community detection in multidimensional social networks. In: Proceedings of 2015 11th International Conference on Natural Computation (icnc), 2015 Aug 15-17, Zhangjiajie, China. IEEE: 2016 January: 1188-1195. doi: 10.1109/ICNC.2015.7378160
Kuz A, Falco M, Giandini R. Análisis de redes sociales: un caso práctico. Computación y Sistemas, 2016; 20 (1): 89-106. doi: 10.13053/CyS-20-1-2321
Yi S, Liu Q, Yan W. How Corporations Utilize Academic Social Networking Website?: A Case Study of Health & Biomedicine Corporations. In: Chen H, Fang Q, Zeng D, Wu J, editors. Smart Health. Proceedings International Conference, ICSH 2018, Wuhan, China, 2018 July 1-3: 325-331. https://link.springer.com/chapter/10.1007/978-3-030-03649-2_3
Matei S. 'Analyzing Social Media Networks with NodeXL: Insights from a Connected World' by Derek Hansen, Ben Shneiderman, and Marc A. Smith: Burlington, MA: Morgan Kauffman, 2011. 284 pages. ISBN: 978-0-12-382229-1. International Journal of Human-Computer Interaction, 2011; 27 (4): 405-408. doi: 10.1080/10447318.2011.544971
Morales-i-Gras J. Comprensión de las redes sociales. Barcelona: Fundació Universitat Oberta de Catalunya (fuoc), 2021.
Humberstone J. Análisis de redes sociales: identificación de comunidades virtuales en Twitter. Realidad y Reflexión, 2019 Dic; 50 (50): 70-81. doi: 10.5377/ryr.v50i50.9095
Diliana NA, Indrawati. Identification of Influencers and Community of Lazada Using Social Network Analysis. In: 2022 International Conference on Data Science and Its Applications (ICoDSA), 2022 Jul 6-7: 305-308. doi: 10.1109/ICoDSA55874.2022.9862849
Bedi P, Sharma C. Community detection in social networks. WIREs (Wiley Interdisciplinary Reviews). Data Mining and Knowledge Discovery, 2016 May-Jun; 6 (3): 115-135. doi: 10.1002/widm.1178
Velázquez-Solis PE, Flores-Ríos BL. Knowledge Flows Approach for Design of a Social Media Software Architecture. In: 2021 Mexican International Conference on Computer Science (ENC), Morelia, México 2021.