Animal and Plant-Based Magnetized Biochars in Lead-Contamined Soil Remediation: A Literature Review
Main Article Content
Abstract
This research was carried out to evaluate f. Animal and plant-based magnetized biochar efficiency in the remediation of soils contaminated with Pb. The PRISMA 2020 method was developed for the literature review, using scientific metasearch engines such as Web of Science, Scopus, and ScienceDirect; then, the Boolean formula was determined for analysis; Finally, relevant articles were synthesized. The results yielded 35 articles on biomass origin, biochar preparation, and obtained remediation
efficiency. The result is the following: The most commonly used type of precursor material has been plant (90%); the most frequently used biochar production method was pyrolysis at 500C° (35%) and the FeCl3 (18%) was the magnetizing agent; the maximum lead removal efficiency was 99.50% using an oriental banana as a precursor material in 120 days, in addition to a FeCl3 magnetizing agent with a 99.50% removal percentage; Finally, a general result obtained was that the remediation efficiency will depend on two important factors: the magnetizing agent and precursor material porosity.
Article Details
References
C. Bi, Y. Zhou, Z. Chen, J. Jia, y X. Bao, “Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China”, Sci. Total Environ., vol. 619–620, pp. 1349–1357, 2018.
U. Zulfiqar et al., “Lead toxicity in plants: Impacts and remediation”, J. Environ. Manage., vol. 250, núm. 109557, p. 109557, 2019.
M. S. Collin et al., “Bioaccumulation of lead (Pb) and its effects on human: A review”, J. Hazard. Mater. Adv., vol. 7, núm. 100094, p. 100094, 2022.
S. Collin et al., “Bioaccumulation of lead (Pb) and its effects in plants: A review”, J. Hazard. Mater. Lett., vol. 3, núm. 100064, p. 100064, 2022.
X.-X. Long, Z.-N. Yu, S.-W. Liu, T. Gao, y R.-L. Qiu, “A systematic review of biochar aging and the potential eco-environmental risk in heavy metal contaminated soil”, J. Hazard. Mater., vol. 472, núm. 134345, p. 134345, 2024.
L. Zhang et al., “Effects of various pyrolysis temperatures on the physicochemical characteristics of crop straw-derived biochars and their application in tar reforming”, Catal. Today, vol. 433, núm. 114663, p. 114663, 2024.
E. Lamberti, G. Viscusi, A. Kiani, Y. Boumezough, M. R. Acocella, y G. Gorrasi, “Efficiency of dye adsorption of modified biochar: A comparison between chemical modification and ball milling assisted treatment”, Biomass Bioenergy, vol. 185, núm. 107247, p. 107247, 2024.
N. Muhanmaitijiang, X. Hu, D. Shan, y H. Chen, “Removal of Pb pollution using alginatecoupled magnetic sludge biochar: Solidification and stabilization behavior and electron promotion mechanisms”, Int. J. Biol. Macromol., vol. 272, núm. Pt 1, p. 132725, 2024.
A. Li, W. Ge, L. Liu, Y. Zhang, y G. Qiu, “Synthesis and application of amine-functionalized MgFe2O4-biochar for the adsorption and immobilization of Cd(II) and Pb(II)”, Chem. Eng. J., vol. 439, núm. 135785, p. 135785, 2022.
M. Azeem et al., “Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review”, J. Hazard. Mater., vol. 427, núm. 128131, p. 128131, 2022.
M. Quispe y D. Paola, “Revisión sistémica del efecto del Biocarbón para remediación de suelos contaminados por actividad minera”, Universidad César Vallejo, 2021.
J. Qu et al., “Applications of functionalized magnetic biochar in environmental remediation: A review”, J. Hazard. Mater., vol. 434, núm. 128841, p. 128841, 2022.
M. Azeem et al., “Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil”, Chemosphere, vol. 282, núm. 131016, p. 131016, 2021.
J. Dong et al., “Influence of biomass feedstocks on magnetic biochar preparation for efficient Pb(II) removal”, Environ. Technol. Innov., vol. 32, núm. 103363, p. 103363, 2023.
G. J. F. Cruz et al., “Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water”, J. Environ. Chem. Eng., vol. 8, núm. 3, p. 103800, 2020.
J. Yang, M. Zhang, H. Wang, J. Xue, Q. Lv, y G. Pang, “Efficient recovery of phosphate from aqueous solution using biochar derived from co-pyrolysis of sewage sludge with eggshell”, J. Environ. Chem. Eng., vol. 9, núm. 5, p. 105354, 2021.
Y. Diao, L. Zhou, M. Ji, X. Wang, Y. Dan, y W. Sang, “Immobilization of Cd and Pb in soil facilitated by magnetic biochar: metal speciation and microbial community evolution”, Environ. Sci. Pollut. Res. Int., vol. 29, núm. 47, pp. 71871–71881, 2022.
J. D. Moyer y S. Hedden, “Are we on the right path to achieve the sustainable development goals?”, World Dev., vol. 127, núm. 104749, p. 104749, 2020.
N. Quezada, Metodología de la investigación. Macro, 2019.
M. J. Page et al., “Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas”, Rev. Esp. Cardiol., vol. 74, núm. 9, pp. 790–799, 2021.
S. Nazari, G. Rahimi, y A. Khademi Jolgeh Nezhad, “Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil”, J. Environ. Chem. Eng., vol. 7, núm. 3, p. 103064, 2019.
R. Gao et al., “Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry”, Sci. Total Environ., vol. 730, núm. 139119, p. 139119, 2020.
X. Wan, C. Li, y S. J. Parikh, “Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar”, Environ. Pollut., vol. 261, núm. 114157, p. 114157, 2020.
Z. Wu, X. Chen, B. Yuan, y M.-L. Fu, “A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II)”, Chemosphere, vol. 239, núm. 124745, p. 124745, 2020.
H. Cui, T. Dong, L. Hu, R. Xia, J. Zhou, y J. Zhou, “Adsorption and immobilization of soil lead by two phosphate-based biochars and phosphorus release risk assessment”, Sci. Total Environ., vol. 824, núm. 153957, p. 153957, 2022.
Q. Li et al., “Simultaneous immobilization of arsenic, lead and cadmium by magnesiumaluminum modified biochar in mining soil”, J. Environ. Manage., vol. 310, núm. 114792, p. 114792, 2022.
X. Qi, H. Yin, M. Zhu, X. Yu, P. Shao, y Z. Dang, “MgO-loaded nitrogen and phosphorus self-doped biochar: High-efficient adsorption of aquatic Cu2+, Cd2+, and Pb2+ and its remediation efficiency on heavy metal contaminated soil”, Chemosphere, vol. 294, núm.
, p. 133733, 2022.
G. Wang et al., “A comparative study on various indicators for evaluating soil health of three biochar materials application”, J. Clean. Prod., vol. 343, núm. 131085, p. 131085, 2022.
G. Wang et al., “A comparative and modeled approach for three biochar materials in simultaneously preventing the migration and reducing the bioaccessibility of heavy metals in soil: Revealing immobilization mechanisms”, Environ. Pollut., vol. 309, núm. 119792, p. 119792, 2022.
W. Ke et al., “Remediation potential of magnetic biochar in lead smelting sites: Insight from the complexation of dissolved organic matter with potentially toxic elements”, J. Environ. Manage., vol. 344, núm. 118556, p. 118556, 2023.
M. Liu et al., “Modified biochar/humic substance/fertiliser compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils”, J. Environ. Manage., vol. 325, núm. Pt A, p. 116614, 2023.
J. Ma et al., “Chemical and mechanical coating of sulfur on baby corn biochar and their role in soil Pb availability, uptake, and growth of tomato under Pb contamination”, Environ. Pollut., vol. 338, núm. 122654, p. 122654, 2023.
C. Peng et al., “Simultaneous immobilization of arsenic, lead, and cadmium in soil by magnesium-aluminum modified biochar: Influences of organic acids, aging, and rainfall”, Chemosphere, vol. 313, núm. 137453, p. 137453, 2023.
H. Feng, F. Yang, y C. Wei, “Developing goethite modified reed-straw biochar for remediation of metal(loids) co-contamination”, Colloids Surf. A Physicochem. Eng. Asp., vol. 692, núm. 133942, p. 133942, 2024.
A. H. Lahori et al., “Comparative role of charcoal, biochar, hydrochar and modified biochar on bioavailability of heavy metal(loid)s and machine learning regression analysis in alkaline polluted soil”, Sci. Total Environ., vol. 930, núm. 172810, p. 172810, 2024.
I. Saleem et al., “Utilizing thiourea-modified biochars to mitigate toxic metal pollution and promote mustard (Brassica campestris) plant growth in contaminated soils”, J. Geochem. Explor., vol. 257, núm. 107331, p. 107331, 2024.
J. Su et al., “Mn-modified bamboo biochar improves soil quality and immobilizes heavy metals in contaminated soils”, Environ. Technol. Innov., vol. 34, núm. 103630, p. 103630, 2024.
S. Yang et al., “Insights into remediation of cadmium and lead contaminated-soil by Fe-Mn modified biochar”, J. Environ. Chem. Eng., vol. 12, núm. 3, p. 112771, 2024.
X. Yang, H. Pan, S. M. Shaheen, H. Wang, y J. Rinklebe, “Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil”, Environ. Int., vol. 156, núm. 106628, p. 106628, 2021.
F. Han, S.-Y. An, L. Liu, Y. Wang, L.-Q. Ma, y L. Yang, “Sulfoaluminate cement-modified straw biochar as a soil amendment to inhibit Pb-Cd mobility in the soil-romaine lettuce system”, Chemosphere, vol. 332, núm. 138891, p. 138891, 2023.
A. Rodriguez, D. Lemos, Y. T. Trujillo, J. G. Amaya, y L. D. Ramos, “Effectiveness of biochar obtained from corncob for immobilization of lead in contaminated soil”, J. Health Pollut., vol. 9, núm. 23, p. 190907, 2019.
J. Fan et al., “Remediation of cadmium and lead polluted soil using thiol-modified biochar”, J. Hazard. Mater., vol. 388, núm. 122037, p. 122037, 2020.
H. Gong, J. Chi, Z. Ding, F. Zhang, y J. Huang, “Removal of lead from two polluted soils by magnetic wheat straw biochars”, Ecotoxicol. Environ. Saf., vol. 205, núm. 111132, p. 111132, 2020.
S. Mandal et al., “Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation”, Environ. Int., vol. 135, núm. 105374, p. 105374, 2020.
M. Rizwan, Q. Lin, X. Chen, M. Adeel, G. Li, y X. Zhao, “Comparison of pb2+ adsorption and desorption by several chemically modified biochars derived from steam exploded oil-rape straw”, Appl. Ecol. Environ. Res., vol. 18, núm. 5, pp. 6181–6197, 2020.
H. Pan et al., “Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil”, Sci. Total Environ., vol. 763, núm. 144218, p. 144218, 2021.
E. Wen et al., “Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil”, J. Hazard. Mater., vol. 407, núm. 124344, p. 124344, 2021.
Y. Zhou y L. Li, “Effect of a passivator synthesized by wastes of iron tailings and biomass on the leachability of Cd/Pb and safety of Pak Choi (Brassica chinensis L.) in contaminated soil”, Processes (Basel), vol. 9, núm. 11, p. 1866, 2021.
K. Ning et al., “Lead stabilization in soil using P-modified biochars derived from kitchen waste”, Environ. Technol. Innov., vol. 28, núm. 102953, p. 102953, 2022.
Q. Yin et al., “Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide stabilizer reduced U and Pb uptake by Indian mustard (Brassica juncea L.) in uranium contaminated soil”, Ecotoxicol. Environ. Saf., vol. 234, núm. 113363, p. 113363, 2022.
Z. Yang et al., “Simultaneous immobilization of lead, cadmium and arsenic in soil by ironmanganese modified biochar”, Front. Environ. Sci., vol. 11, 2023.
M. V. Ghandali, S. Safarzadeh, R. Ghasemi-Fasaei, y S. Zeinali, “Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO2 nanoparticle-modified biochar”, Sci. Rep., vol. 14, núm. 1, p.
, 2024.
X. Zhang, J. Xue, H. Han, y Y. Wang, “Study on improvement of copper sulfide acid soil properties and mechanism of metal ion fixation based on Fe-biochar composite”, Sci. Rep., vol. 14, núm. 1, p. 247, 2024.
P. R. Yaashikaa, P. S. Kumar, S. Varjani, y A. Saravanan, “A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy”, Biotechnol. Rep. (Amst.), vol. 28, núm. e00570, p. e00570, 2020.
M. Liang, L. Lu, H. He, J. Li, Z. Zhu, y Y. Zhu, “Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review”, Sustainability, vol. 13, núm. 24, p. 14041, 2021.
B. Xiao et al., “A review on magnetic biochar for the removal of heavy metals from contaminated soils: Preparation, application, and microbial response”, J. Hazard. Mater. Adv., vol. 10, núm. 100254, p. 100254, 2023.
L. Wang et al., “New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment”, Soil Use Manag., vol. 36, núm. 3, pp. 358–386, 2020.
P. Sharma, Abhilasha, K. Abhishek, S. Bhattacharya, S. Sengupta, y C. S. Seth, “Removal of lead in water by potassium hydroxide-activated biochar developed from Syzygium cumini stem”, Discov. Chem. Eng., vol. 4, núm. 1, 2024.
M. P. O. Pulido y A. T. O. Ramírez, “Aplicación de biocarbón como estrategia de remediación de suelos contaminados por hidrocarburos”, Gest. Ambiente, vol. 25, núm. 2, 2022.
G. Murtaza et al., “Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: A critical review”, Separations, vol. 10, núm. 3, p. 197, 2023.
							
			
		
			
			
				