Estimación de los gases efecto invernadero generados por las plantas de tratamiento de aguas residuales ubicadas en la cuenca del río Bogotá

Diana Lucía Cristancho Montenegro | Biografía
Universidad Central
Wilson Gámez Posada | Biografía
Interventoria RSDJ
Jorge Armando Guerra Alfaro | Biografía
Interventoría RSDJ
María Fernanda Dueñas Escudero | Biografía
Universidad Central

Resumen

El presente estudio contiene un análisis de datos que relaciona la carga orgánica presente en las plantas de tratamiento de aguas residuales (PTAR) de la cuenca del río Bogotá y su incidencia en la generación de gases efecto invernadero (GEI) durante el proceso de depuración. Dentro del análisis se recopiló una serie de consideraciones técnicas relacionadas con la generación de GEI de las diferentes PTAR que hacen parte de la cuenca. De acuerdo con las características del sistema empleado en el tratamiento de las aguas residuales, se determina cuál proceso genera mayor aporte de emisiones, teniendo en cuenta el estado actual de cada planta. Para ello, se emplea la metodología nivel 1 del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) para los inventarios de GEI. Con base en los resultados obtenidos, se identifica cuáles sistemas de tratamiento empleados en las PTAR inciden en mayor proporción en la emisión de GEI.

Referencias

  1. [1] O. Ashrafi et al., “Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission,” Journal of Environmental Management, 158, pp.146-157, 2015.

  2. [2] R. Parra et al., “Estimación de factores de emisión de gases de efecto invernadero en una planta de tratamiento de aguas residuales,” Revista Boliviana de Quimica, vol. 27, n.° 2, pp. 81-88, 2010.

  3. [3] Z. Bao et al., “Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China,” International Biodeterioration and Biodegradation, vol. 108, pp. 108-114, 2016.

  4. [4] R. Marques et al., “Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems,” Water Research, vol. 99, pp. 171-179, 2016.

  5. [5] R. Boioccgi et al., “Control of wastewater N2O emissions by balancing the microbial communities using a fuzzy-logic approach,” IFAC-PapersOnLine, vol. 49, n.° 7, pp. 1157-1162, 2016.

  6. [6] I. Benitez, y Blanco, “Recuperación de metano y reducción de emisiones en PTAR Nuevo Laredo, Tamaulipas, México”. TYCA, pp 88, 2017.

  7. [7] Y. Lorenzo-Toja et al., “Beyond the conventional life cycle inventory in wastewater treatment plants,” Science of the Total Environment, vol. 553, pp. 71-82, 2016.

  8. [8] B. Meléndez et al., “Estudio evaluativo del manejo de biosólidos para el caso de la Planta de Tratamiento de Aguas Residuales (PTAR) El Salitre,” [En línea], Disponible: http://ridum.umanizales.edu.co:8080/xmlui/handle/6789/2280

  9. [9] D. Kyung et al., “Estimation of CO2 emission from water treatment plant - Model development and application,” Journal of Environmental Management, vol. 131, pp. 74-81, 2013.

  10. [10] C. Baresel et al., “Comparison of nitrous oxide (N2O) emissions calculations at a Swedish wastewater treatment plant based on water concentrations versus off-gas concentrations,” Advances in Climate Change Research, vol. 7, n.° 3, pp. 1-7, 2016.

  11. [11] D. Blanco et al., “Análisis de la huella de carbono en una planta de tratamiento de agua tipo carrusel”, Tecnoagua, marzo-abril, 2014.

  12. [12] C. Wei-Hsianh et al., “Comparing volatile organic compound emissions during equalization in wastewater treatment between the flux-chamber and mass-transfer methods”, Process Safety and Environmental Protection, vol.109, pp. 410-419, 2017.

  13. [13] O. Ashrafi, L. Yerushalmi y F. Haghighat, “Mathematical modeling of GHG emission in wastewater treatment plants: steady-state vs. dynamic”, presentado en EIC Climate Change Technology Conference, Montreal, 2013.

  14. [14] SERVICOMUNAL S.A., “Estimación de emisiones atmosféricas”, de Proyecto “Planta de Tratamiento de Aguas Servidas Colina”, Santiago de Chile, Sustentable.cl S.A., 2009.

  15. [15] Alcaldía de Bogotá et al., “Inventario de emisiones de gases efecto invernadero para la región Cundinamarca-Bogotá,” [En línea], Disponible: http://www.oab.ambientebogota.gov.co/es/documentacion-e-investigaciones/resultado-busqueda/inventario-de-emisiones-de-gases-efecto-invernadero-para-la-region-bogota-cundinamarca

  16. [16] CDIM y ESAP, “Plan de Ordenamiento Territorial: conceptos básicos de elaboración y aspectos relevantes para su revisión y ajuste 2017,” [En línea], Disponible: http://cdim.esap.edu.co/bancomedios/Documentos%20PDF/pot_%20lenguazaque_.pdf.

  17. [17] Essere Ltda., “Estudios y diseños de obras de rehabilitacion y prediseños de ampliacion de 19 PTAR”, Bogotá, 2005.

  18. [18] A. Pulido et al., Inventario nacional y departamental de gases efecto invernadero- Colombia, Bogotá: Puntoaparte Bookvertising, 2016.

  19. [19] OCDE et al., Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero, Hayama: IGES, 2006.

  20. [20] A. Meneses y E. Hernández, “Identificación de emisiones directas e indirectas de gel en el sector tratamiento y disposición de aguas residuales: bases para la formulación de proyectos mdl en ptar”, Bistua, vol. 2, n.° 1, pp. 60-69, 2004.

  21. [21] M. Vargas et al., “Inventario de emisiones de gases de efecto invernadero: un insumo en la gestión del Instituto Tecnológico de Costa Rica (ITCR)”, Gestión y Ambiente, vol. 18, n.° 1, pp. 61-79, 2015.

  22. [22] S. Eggleston et al., “Tratamiento y eliminación de aguas residuales”, en Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero, Vol. 5, p. 31, 2006.

  23. [23] A. Prata et al., “Wind friction parametrisation used in emission models for wastewater treatment plants,” Water Research, vol. 124, pp. 49-66, 2017.

  24. [24] C. Wen-Hsi et al., “Volatile organic compound emissions from wastewater treatment plants in Taiwan: Legal regulations and costs of control,” Journal of Environmental management, vol. 88, n.° 4, pp. 1485-1494, 2007.

  25. [25] A. Aboobakar et al., “Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant,” Water Research, vol. 47, n.° 2 pp. 524-534, 2013.

  26. [26] P. Czepiel et al., “Methane Emissions from Municipal Wastewater Treatment Processes,” Environmental Science Technologyc, vol. 27, n.°12, pp. 2472-2477, 1993.

  27. [27] X. Wang et al., “Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill,” Waste Management, vol. 37, n.° 7, pp. 1-9, 2014.

  28. [28] C. Zhang et al., “Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China,” Environmental Pollution, vol. 220, pp. 963-970, 2017.

  29. [29] P. Pereira et al., “Controlling factors of nitrous oxide emissions from a conventional activated sludge wastewater treatment plant,” Engevista, vol. 17, n.° 3, pp. 375-384, 2015.

  30. [30] Z. Bao et al., “Characteristic of direct CO2 emissions in four full-scale wastewater treatment plants,” Desalination and Water Treatment, vol. 54, n.° 4-5, pp. 1070-1079, 2015.

  31. [31] S. Zeng et al., “ Efficiency a ssessment of urban wastewater treatment plants in China: Considering greenhouse gas emissions,” Resources, Conservation and Recycling, vol. 120, 2016.

  32. [32] M. J. Kampschreur et al., “Dynamics of nitric oxide and nitrous oxide emission during full-scale reject treatment,” Water Research, vol. 42, n.° 3, pp. 812-826, 2008.

  33. [33] Departamento Administrativo Nacional de Estadísticas (DANE), Proyecciones de población [En línea], Disponible: http://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion.

  34. [34] D. Nolasco, “Desarrollo de proyectos MDL en plantas de tratamiento de aguas residuales”, Banco Interamericano de Desarrollo, 2010.

  35. [35] J. P. Miranda et al., “El análisis del ciclo de vida aplicado a las plantas de tratamiento de aguas residuales,” Ciencia y Sociedad República Dominicana, vol. 41, n.° 3, pp. 617-636, 2016.

  36. [36] Global Meethane Initiative, “El metano de las aguas residuales municipales: Reducir emisiones, avanzar en la recuperación y aprovechar oportunidades”, [En línea], Disponible: https://www.globalmethane.org/documents/ww_fs_spa.pdf, 2012.

  37. [37] R. P. Fort, “Emisión de gases de efecto invernadero en el tratamiento de aguas residuales mediante humedales construidos,” Tesis, Universidad Politécnica de Cataluña, Barcelona, 2012.

  38. [38] A. R. Caballero et al., “Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system,” Science of the Total Environment, vol. 493, pp. 384-391, 2014.

  39. [39] D. A. Nolasco, “Desarrollo de proyectos MDL en plantas de tratamiento de aguas residuales,” Banco Iberoamericano de Desarrollo, [En línea], Disponible: https://publications.iadb.org/es/publicacion/15225/desarrollo-de-proyectos-mdl-en-plantas-de-tratamiento-de-aguasresiduales, 2010.

  40. [40] M. A. Jurado y I. D. Mercado, “Emisiones de gases de efecto invernadero: ¿Las ecotecnologías, soluciones a un problema ambiental?,” Retema, noviembre-diciembre, vol. 23, pp. 54-61, 2010.

  41. [41] M. Goro et al., “Estimation of the effects of chemically-enhanced treatment of urban sewage system based on life-cycle management,” Sustainable Cities and Society, vol. 9, pp. 23-31, 2013.

  42. [42] K. Y. Park et al., “Emission and Control of Nitrous Oxide from a Biological Wastewater Treatment System with Intermittent Aeration,” Journal of Bioscience and Bioengineering, vol. 90, n.° 3, pp. 247-252, 2000.

  43. [43] M. Shoeib et al., “Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants,” Environmental Pollution, pp. 1-10, 2016.

  44. [44] D. de Hass et al., “Energy and Greenhouse Footprints of Wastewater Treatment Plants in South-East Queensland,” Australian Water Association, [En línea], Disponible: https://www.researchgate.net/publication/43528396_Energy_and_greenhouse_footprints_of_wastewater_treatment_plants_in_South-east_Queensland, 2009.

  45. [45] T. Pan et al., “Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: A case study in China,” Ecological Engineering, vol. 37, n.° 2, pp. 248-254, 2011.

  46. [46] N. Salinas y C. Bustos, “Estudio de políticas, medidas e instrumentos para la mitigación de gases de efecto invernadero en el sector aguas residuales en México,” Ciudad de México D.F., 2012.

  47. [47] M. A. Martínez Prado, “Estimación de las emisiones de gases de efecto invernadero para el estado de Durango, México,” Revista Mexicana de Ingeniería Química, vol. 15, n.° 2, pp. 575-601, 2016.

  48. [48] M. G. Melgarejo Ramírez, “Evaluación de emisiones de N2O en sistemas de tratamiento de aguas residuales,” Tesis, Escola de Camins, Barcelona, 2016.

  49. [49] J. B. Carrasco Leal (consultor), “Factores de emisión considerados en la herramienta de cálculo de la huella de carbono corporativa,” [En línea], Disponible: https://www.acueducto.com.co/wps/html/resources/2018ag/huella_carbono/informe_gei/6_anexo_3Factores_Emision_Herramienta_Inventario_GEI_EAB_2014.pdf, 2015.

  50. [50] L. Delgado et al., “Huella de carbono de la regeneración de agua,” [En línea], Disponible: http://www.veoliawatertechnologies.es/vwst-iberica/ressources/documents/1/32563,Huellacarbono_TA_JUNIO2012.pdf ,2012.

Cómo citar
Cristancho Montenegro, D. L., Gámez Posada, W., Guerra Alfaro, J. A., & Dueñas Escudero, M. F. (2019). Estimación de los gases efecto invernadero generados por las plantas de tratamiento de aguas residuales ubicadas en la cuenca del río Bogotá. Revista Ingenierías Universidad De Medellín, 18(34), 25-44. https://doi.org/10.22395/rium.v18n34a2

Descargas

La descarga de datos todavía no está disponible.

Send mail to Author


Send Cancel

Estamos indexados en