Evaluación de la vulnerabilidad de sistemas eléctricos por medio de programación multinivel: una revisión bibliográfica

Juan Pablo Hernandez Valencia | Biografía
Instituto Tecnológico Metropolitano
Jesus Maria Lopez-Lezama | Biografía
Universidad de Antioquia
Bonie Johana Restrepo Cuestas | Biografía
Instituto Tecnológico Metropolitano

Resumen

Los estudios de vulnerabilidad pueden identificar elementos críticos en los sistemas de distribución de potencia eléctrica con el fin de tomar medidas de protección contra posibles escenarios que pueden resultar en desconexión de carga (también llamado deslastre de carga), que puede ser ocasionada por eventos naturales o ataques deliberados. Este artículo es una reseña bibliográfica sobre el segundo tipo de casos, es decir, los del problema de interdicción, en el que se asume la existencia de un agente disruptivo cuyo objetivo es maximizar los daños ocasionados al sistema mientras el operador de red actúa como agente de defensa del mismo. La interacción no simultánea de estos dos agentes crea un problema de optimización multinivel y en la bibliografía se reportan varios modelos de interdicción y soluciones para abordar el problema. La contribución principal de este artículo es la presentación de consideraciones que deben tomarse en cuenta para analizar, modelar y resolver el problema de la interdicción, incluyendo las soluciones, métodos y técnicas más comunes para solucionarlo, así como futuros estudios al respecto. Esta revisión encontró que la mayoría de la investigación en el tema se enfoca en el análisis de los sistemas de transmisión, considerando las aproximaciones lineales de la red; algunos estudios en interdicción usan un modelo AC de la red o tratan las redes de distribución directamente desde un enfoque multinivel. Algunos retos en este campo son el modelado y la inclusión de nuevas opciones de defensa para el operador de la red, como la generación distribuida, la respuesta a la demanda y la reconfiguración topológica del sistema. 

Referencias

  1. J.M. Arroyo, and F.D. Galiana, “On the Solution of the Bilevel Programming Formulation of the Terrorist Threat Problem,” IEEE Trans.Power Syst., vol. 20, pp. 789–797, 2005. DOI: 10.1109/TPWRS.2005.846198
  2. C.M. Rocco, J.E. Ramirez-Marquez, D.E. Salazar, and C. Yajure, “Assessing the Vulnerability of a Power System Through a Multiple Objective Contingency Screening Approach,” IEEE Trans.Reliab., vol. 60, pp. 394–403, 2011. DOI: 10.1109/TR.2011.2135490
  3. J. Fang, C. Su, Z. Chen, H. Sun, and P. Lund, “Power System Structural Vulnerability Assessment Based on an Improved Maximum Flow Approach,” IEEE Trans.Smart Grid, vol. 9, pp. 777–785, 2018. DOI: 10.1109/TSG.2016.2565619
  4. E. Bompard, R. Napoli, and F. Xue, “Analysis of structural vulnerabilities in power transmission grids,” Int.J. Crit. Infrastruct. Prot., vol. 2, pp. 5–12, 2009. DOI: 10.1016/j.ijcip.2009.02.002.
  5. J.M. Arroyo, and F.J. Fernández, “A Genetic Algorithm for Power System Vulnerability Analysis under Multiple Contingencies,” in: Springer, Berlin, Heidelberg, 2013, 41–68 p. DOI: 10.1007/978-3-642-37838-6_2
  6. H. Davarikia, and M. Barati, “A tri-level programming model for attack-resilient control of power grids,” J. Mod.Power Syst. Clean Energy, vol. 6, pp. 918–929, 2018. DOI: 10.1007/s40565-018-0436-y
  7. J. Salmeron, K. Wood, and R. Baldick, “Analysis of Electric Grid Security Under Terrorist Threat,” IEEE Trans.Power Syst., vol. 19, pp. 905–912, 2004. DOI: 10.1109/TPWRS.2004.825888
  8. A. Delgadillo, J.M. Arroyo, and N. Alguacil, “Analysis of Electric Grid Interdiction With Line Switching,” IEEE Trans.Power Syst., vol. 25, pp. 633–641, 2010. DOI: 10.1109/TPWRS.2009.2032232
  9. Y. Lin, and Z. Bie, “Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding,” Appl.Energy, vol. 210, pp. 1266–1279, 2018. DOI: 10.1016/j.apenergy.2017.06.059
  10. Z. Bie, Y. Lin, G. Li, and F. Li, “Battling the Extreme: A Study on the Power System Resilience,” Proc. IEEE, vol. 105, pp. 1253–1266, 2017. DOI: 10.1109/JPROC.2017.2679040
  11. M. Ouyang, Z. Pan, L. Hong, and L. Zhao, “Correlation analysis of different vulnerability metrics on power grids,” Phys.A Stat. Mech. Its Appl., vol. 396, pp. 204–211, 2014. DOI: 10.1016/J.PHYSA.2013.10.041
  12. Y. Lin, Z. Bie, and A. Qiu, “A review of key strategies in realizing power system resilience,” Glob.Energy Interconnect., vol. 1, pp. 70–78, 2018. DOI: 10.14171/j.2096-5117.gei.2018.01.009
  13. M. Ouyang, M. Xu, C. Zhang, and S. Huang, “Mitigating electric power system vulnerability to worst-case spatially localized attacks,” Reliab.Eng. Syst. Saf., vol. 165, pp. 144–154, 2017. DOI: 10.1016/J.RESS.2017.03.031
  14. A. Abedi, L. Gaudard, and F. Romerio, “Review of major approaches to analyze vulnerability in power system,” Reliab.Eng. Syst. Saf., vol. 183, pp. 153–172, 2019. DOI: 10.1016/j.ress.2018.11.019
  15. M. Ouyang, and L. Dueñas-Osorio, “Time-dependent resilience assessment and improvement of urban infrastructure systems,” Chaos, vol. 22, pp. 033122, 2012. DOI: 10.1063/1.4737204
  16. M. Ouyang, L. Dueñas-Osorio, and X. Min, “A three-stage resilience analysis framework for urban infrastructure systems,” Struct.Saf., vol. 36–37, pp. 23–31, 2012. DOI: 10.1016/j.strusafe.2011.12.004
  17. A. Gholami, T. Shekari, M.H. Amirioun, F. Aminifar, M.H. Amini, and A. Sargolzaei, “Toward a consensus on the definition and taxonomy of power system resilience,” IEEE Access, vol. 6, pp. 32035–32053, 2018. DOI: 10.1109/ACCESS.2018.2845378
  18. K. Poljanšek, F. Bono, and E. Gutiérrez, “Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks,” Earthq. Eng. Struct. Dyn., vol. 41, pp. 61–79, 2012. DOI: 10.1002/eqe.1118
  19. M. Ouyang, and L. Dueñas-Osorio, “Multi-dimensional hurricane resilience assessment of electric power systems,” Struct.Saf., vol. 48, pp. 15–24, 2014. DOI: 10.1016/j.strusafe.2014.01.001
  20. I.B. Sperstad, G.H. Kjølle, and O. Gjerde, “A comprehensive framework for vulnerability analysis of extraordinary events in power systems,” Reliab.Eng. Syst. Saf., vol. 196, pp. 106788, 2020. DOI: 10.1016/j.ress.2019.106788
  21. A. Wang, Y. Luo, G. Tu, and P. Liu, “Vulnerability Assessment Scheme for Power System Transmission Networks Based on the Fault Chain Theory,” IEEE Trans.Power Syst., vol. 26, pp. 442–450, 2011. DOI: 10.1109/TPWRS.2010.2052291
  22. C.C. Marín-Cano, J.E. Sierra-Aguilar, J.M. López-Lezama, Á. Jaramillo-Duque, and W.M. Villa-Acevedo, “Implementation of User Cuts and Linear Sensitivity Factors to Improve the Computational Performance of the Security-Constrained Unit Commitment Problem,” Energies, vol. 12, pp. 1399, 2019. DOI: 10.3390/en12071399
  23. Y. Zhu, J. Yan, Y. Tang, Y.L. Sun, and H. He, “Resilience Analysis of Power Grids Under the Sequential Attack,” IEEE Trans.Inf. Forensics Secur., vol. 9, pp. 2340–2354, 2014. DOI: 10.1109/TIFS.2014.2363786
  24. P.E. Roege, Z.A. Collier, J. Mancillas, J.A. McDonagh, and I. Linkov, “Metrics for energy resilience,” Energy Policy, vol. 72, pp. 249–256, 2014. DOI: 10.1016/J.ENPOL.2014.04.012
  25. S. Wang, J. Zhang, M. Zhao, and X. Min, “Vulnerability analysis and critical areas identification of the power systems under terrorist attacks,” Phys.A Stat. Mech. Its Appl., vol. 473, pp. 156–165, 2017. DOI: 10.1016/j.physa.2017.01.003
  26. S. Wang, J. Zhang, and N. Duan, “Multiple perspective vulnerability analysis of the power network,” Phys.A Stat. Mech. Its Appl., vol. 492, pp. 1581–1590, 2018. DOI: 10.1016/J.PHYSA.2017.11.083
  27. S. Arianos, E. Bompard, A. Carbone, and F. Xue, “Power grid vulnerability: A complex network approach,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 19, pp. 013119, 2009. DOI: 10.1063/1.3077229
  28. Y.-P. Fang, and G. Sansavini, “Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience,” Reliab.Eng. Syst. Saf., vol. 185, pp. 1–11, 2019. DOI: 10.1016/j.ress.2018.12.002
  29. S. Mousavizadeh, M.-R. Haghifam, and M.-H. Shariatkhah, “A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources,” Appl.Energy, vol. 211, pp. 443–460, 2018. DOI: 10.1016/J.APENERGY.2017.11.067
  30. J.Z. Zhu, “Optimal reconfiguration of electrical distribution network using the refined genetic algorithm,” Electr.Power Syst. Res., vol. 62, pp. 37–42, 2002. DOI: 10.1016/S0378-7796(02)00041-X
  31. A. Costa, D. Georgiadis, T.S. Ng, and M. Sim, “An optimization model for power grid fortification to maximize attack immunity,” Int.J. Electr. Power Energy Syst., vol. 99, pp. 594–602, 2018. DOI: 10.1016/j.ijepes.2018.01.020
  32. H. Mo, M. Xie, and G. Levitin, “Optimal resource distribution between protection and redundancy considering the time and uncertainties of attacks,” Eur.J. Oper. Res., vol. 243, pp. 200–210, 2015. DOI: 10.1016/J.EJOR.2014.12.006
  33. T. Kim, S.J. Wright, D. Bienstock, and S. Harnett, “Vulnerability Analysis of Power Systems,” ArXiv Prepr., 2015. Disponible: http://arxiv.org/abs/1503.02360
  34. V.M. Bier, E.R. Gratz, N.J. Haphuriwat, W. Magua, and K.R. Wierzbicki, “Methodology for identifying near-optimal interdiction strategies for a power transmission system,” Reliab. Eng. Syst. Saf., vol. 92, pp. 1155–1161, 2007. DOI: 10.1016/J.RESS.2006.08.007
  35. M. Ouyang, L. Zhao, Z. Pan, and L. Hong, “Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks,” Phys.A Stat. Mech. Its Appl., vol. 403, pp. 45–53, 2014. DOI: 10.1016/J.PHYSA.2014.01.070
  36. A.B.M. Nasiruzzaman, H.R. Pota, and M.N. Akter, “Vulnerability of the large-scale future smart electric power grid,” Phys.A Stat. Mech. Its Appl., vol. 413, pp. 11–24, 2014. DOI: 10.1016/J.PHYSA.2014.06.024
  37. N. Alguacil, A. Delgadillo, and J.M. Arroyo, “A trilevel programming approach for electric grid defense planning,” Comput.Oper. Res., vol. 41, pp. 282–290, 2014. DOI: 10.1016/j.cor.2013.06.009
  38. T. Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang, “A Data-Driven Stackelberg Market Strategy for Demand Response-Enabled Distribution Systems,” IEEE Trans.Smart Grid, vol. 10, pp. 2345–2357, 2019. DOI: 10.1109/TSG.2018.2795007
  39. J. Zhang, and J. Zhuang, “Modeling a multi-target attacker-defender game with multiple attack types,” Reliab.Eng. Syst. Saf., vol. 185, pp. 465–475, 2019. DOI: 10.1016/j.ress.2019.01.015
  40. J.M. Arroyo, “Bilevel programming applied to power system vulnerability analysis under multiple contingencies,” IET Gener.Transm. Distrib., vol. 4, pp. 178, 2010. DOI: 10.1049/iet-gtd.2009.0098
  41. J.M. Arroyo, and F.J. Fernandez, A Genetic Algorithm Approach for the Analysis of Electric Grid Interdiction with Line Switching. in: 2009 15th Int. Conf. Intell. Syst. Appl. to Power Syst. IEEE, 2009, 1–6 p. DOI: 10.1109/ISAP.2009.5352849
  42. L. Agudelo, J.M. López-Lezama, and N. Muñoz Galeano, “Vulnerability Assessment of Power Systems to Intentional Attacks using a Specialized Genetic Algorithm,” DYNA, vol. 82, pp. 78–84, 2015. DOI: 10.15446/dyna.v82n192.48578
  43. J.M. López-Lezama, J. Cortina-Gómez, and N. Muñoz-Galeano, “Assessment of the Electric Grid Interdiction Problem using a nonlinear modeling approach,” Electr.Power Syst. Res., vol. 144, pp. 243–254, 2017. DOI: 10.1016/j.epsr.2016.12.017
  44. J.J. Cortina, J.M. López-Lezama, and N. Muñoz-Galeano, “Metaheurísticas Aplicadas al Problema de Interdicción en Sistemas de Potencia,” Inf.Tecnológica, vol. 29, pp. 73–88, 2018. DOI: 10.4067/s0718-07642018000200073
  45. J. Salmeron, K. Wood, and R. Baldick, “Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids,” IEEE Trans.Power Syst., vol. 24, pp. 96–104, 2009. DOI: 10.1109/TPWRS.2008.2004825
  46. S. Sayyadipour, G.R. Yousefi, and M.A. Latify, “Mid-term vulnerability analysis of power systems under intentional attacks,” IET Gener.Transm. Distrib., vol. 10, pp. 3745–3755, 2016. DOI: 10.1049/iet-gtd.2016.0052
  47. L. Agudelo, J.M. López-lezama, and N. Muñoz, “Análisis de Vulnerabilidad de Sistemas de Potencia Mediante Programación Binivel Vulnerability Analysis of Power Systems using Bilevel Programing,” Inf.Tecnol., vol. 25, pp. 103–114, 2014. DOI: 10.4067/S0718-07642014000300013
  48. T. Kim, S.J. Wright, D. Bienstock, and S. Harnett, “Analyzing Vulnerability of Power Systems with Continuous Optimization Formulations,” IEEE Trans.Netw. Sci. Eng., vol. 3, pp. 132–146, 2016. DOI: 10.1109/TNSE.2016.2587484
  49. L. Shi, Q. Dai, and Y. Ni, “Cyber–physical interactions in power systems: A review of models, methods, and applications,” Electr. Power Syst. Res., vol. 163, pp. 396–412, 2018. DOI: 10.1016/j.epsr.2018.07.015
  50. Y. Xiang, L. Wang, and N. Liu, “Coordinated attacks on electric power systems in a cyberphysical environment,” Electr.Power Syst. Res., vol. 149, pp. 156–168, 2017. DOI: 10.1016/j.epsr.2017.04.023
  51. H. Nemati, M.A. Latify, and G.R. Yousefi, “Tri-level transmission expansion planning under intentional attacks: virtual attacker approach – part I: formulation,” IET Gener.Transm. Distrib., vol. 13, pp. 390–398, 2019. DOI: 10.1049/iet-gtd.2018.6104
  52. H. Nemati, M.A. Latify, and G.R. Yousefi, “Tri-level transmission Expansion planning under intentional attacks: virtual attacker approach-part II: Case studies,” IET Gener. Transm. Distrib., vol. 13, pp. 399–408, 2019. DOI: 10.1049/iet-gtd.2018.6105
  53. X. Wu, and A.J. Conejo, “An Efficient Tri-Level Optimization Model for Electric Grid Defense Planning,” IEEE Trans.Power Syst., vol. 32, pp. 2984–2994, 2017. DOI: 10.1109/TPWRS.2016.2628887
  54. K. Lai, M. Illindala, and K. Subramaniam, “A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment,” Appl.Energy, vol. 235, pp. 204–218, 2019. DOI: 10.1016/J.APENERGY.2018.10.077
  55. Z. Ding, Y. Xiang, and L. Wang, Incorporating Unidentifiable Cyberattacks into Power System Reliability Assessment.in: IEEE Power Energy Soc. Gen. Meet. IEEE, 2018, 1–5 p. DOI: 10.1109/PESGM.2018.8585884
  56. W. Yuan, L. Zhao, and B. Zeng, “Optimal power grid protection through a defender–attacker–defender model,” Reliab.Eng. Syst. Saf., vol. 121, pp. 83–89, 2014. DOI: 10.1016/J.RESS.2013.08.003
  57. T. Ding, L. Yao, and F. Li, “A multi-uncertainty-set based two-stage robust optimization to defender–attacker–defender model for power system protection,” Reliab.Eng. Syst. Saf., vol. 169, pp. 179–186, 2018. DOI: 10.1016/j.ress.2017.08.020
  58. Y. Wang, and R. Baldick, “Interdiction Analysis of Electric Grids Combining Cascading Outage and Medium-Term Impacts,” IEEE Trans.Power Syst., vol. 29, pp. 2160–2168, 2014. DOI: 10.1109/TPWRS.2014.2300695
Cómo citar
Hernandez Valencia, J. P., Lopez-Lezama, J. M., & Restrepo Cuestas, B. J. (2021). Evaluación de la vulnerabilidad de sistemas eléctricos por medio de programación multinivel: una revisión bibliográfica. Revista Ingenierías Universidad De Medellín, 20(38), 99-117. https://doi.org/10.22395/rium.v20n38a6

Descargas

La descarga de datos todavía no está disponible.

Send mail to Author


Send Cancel

Estamos indexados en