Innovation in Water Distribution and Recirculation Systems in a Sustainable Social Housing Model

Juan Osorio-Sánchez | Bio
Universidad Distrital Francisco José de Caldas
Jaime Ussa-Garzón | Bio
Universidad Distrital Francisco José de Caldas
Francisco Anzola-Osorio | Bio
Universidad Distrital Francisco José de Caldas

Abstract

Currently, there is a high systematic inequality regarding access to water, both between and within countries. In some, there is a wasteful picture and others show high water stress. This research developed an innovative response with the design of water supply, distribution, and recirculation systems (WSDR) in a sustainable social housing model (SSH) proposed by the researchers, based on a technological assessment which considers principles of spatial, environmental and economic efficiency in aqueduct cost and public service production for builders, user comfort, resource use optimization and its supply sources. In order to achieve this, the water resource of Bogota was diagnosed and technological options for saving water in new residential buildings were proposed; their viability was evaluated and their dimensions were estimated. Among the results, it was possible to project the saving of 110.03L/day or 40 % consumption of each residential unit (UH) proposed in the SSH model and 522,200L/ month in the tasks of washing and irrigation of common areas; This would result in water savings of 2,210,000 m3 /month in the urban expansion area of Bogota, equivalent to 1,361.54 Ha.

References

  1. Lenntech, “Historia del tratamiento del agua,” 2020. https://www.lenntech.es/procesos/desinfeccion/historia/historia-tratamiento-agua-potable.htm (accessed Mar. 11, 2020)
  2. J. Pablo, M. Idrobo, and A. Figueroa Casas, “Evolución de los conceptos y paradigmas que orientan la gestión ambiental ¿cuáles son sus limitaciones desde lo glocal?,” Rev. Ing. Univ. Medellín, vol. 13, no. 24, Jul. 2013, Accessed: Mar. 11, 2020. [Online]. Available: http://www.scielo.org.co/pdf/rium/v13n24/v13n24a02
  3. Wang, “Annual water consumption per capita worldwide in 2017, by select country (in cubic meters),” Statista, 2020. https://www.statista.com/statistics/263156/water-consumption-in-selected-countries/ (accessed Feb. 28, 2020)
  4. Water Governance in Cities, “Waste of water in cities,” active sustainability, 2016. https://www.activesustainability.com/water/waste-of-water-in-cities/ (accessed Mar. 11, 2020)
  5. MAVDT, Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico [recurso electrónico]: TÍTULO B., 2 ed. Sistemas de acueducto, 2010 ISBN 9789588491516 http://www.minvivienda.gov.co/Documents/ViceministerioAgua/TITULOB030714.pdf.
  6. Universidad Central, “Agua abundante, desperdicio constante,” U. Central, 2014. https://www.ucentral.edu.co/noticentral/agua-abundante-desperdicio-constante (accessed Mar. 11, 2020)
  7. ONU, “Water | United Nations,” ONU, 2020. https://www.un.org/en/sections/issues-depth/water/ (accessed Mar. 12, 2020) https://www.un.org/en/sections/issues-depth/water/
  8. J. Susunaga, “Construcción Sostenible, Una Alternativa Para La Edificación De Viviendas De Interes Social Y Prioritario,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2014, doi: 10.1017/CBO9781107415324.004. ISBN9788578110796.
  9. F. Ezbakhe, R. Giné-Garriga, and A. Pérez-Foguet, “Leaving no one behind: Evaluating access to water, sanitation and hygiene for vulnerable and marginalized groups,” Sci. Total Environ., vol. 683, pp. 537–546, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.05.207 https://www.sciencedirect.com./science/article/pii/S0048969719322466.
  10. C. Sánchez,“Portal Minvivienda Colombia ha reducidoeldeficit de viviendaen un 5,6,” MinVivienda, 2018. http://www.minvivienda.gov.co/sala-de-prensa/noticias/2018/marzo/colombia-ha-reducido-el-deficit-de-vivienda-en-un-5-6 (accessed Feb. 14, 2020) http://www.minvivienda.gov.co/sala-de-prensa/noticias/2018/marzo/colombia-ha-reducido-el-deficit-de-vivienda-en-un-5-6
  11. M. González, “Evolución de la política de vivienda en Colombia,” vol. 2, no. SGEM2016 Conference Proceedings, pp. 1–39, 2014.
  12. Y. Gómez, “Dime de qué estrato eres, y te diré en cuántos metros vives,” Portafolio, 2019. https://www.portafolio.co/mis-finanzas/vivienda/estudio-revela-los-metros-cuadrados-en-los-que-vive-una-persona-en-bogota-segun-su-estrato-527130 (accessed Mar. 13, 2020)
  13. L. Cárcamo, “Código Técnico De La Edificación Como Instrumento Para La Protección Del Medio Ambiente: Una Mirada Al Caso Colombiano,” 2016. doi: 10.5209/mare.54799 DOI10.5209/mare.54799.
  14. A. Ramirez, “Concejo Colombiano de construcción sostenible,” in Concejo Colombiano de construcción sostenible, 2015, p. 3.
  15. C. Siew, H. Chong, L. Jack, and A. Mohd, “Revisiting triple bottom line within the context of sustainable construction: A systematic review,” J. Clean. Prod., vol. 252, p. 119884, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.119884 https://www.sciencedirect.com/science/article/pii/S0959652619347547
  16. F. Xu, N. Xie, J. Zhou, K. Yin, and B. Wang, “Study on developing status and appropriate technologies analysis of green residential buildings in Hunan Province,” in Energy Procedia, 2017, vol. 121, pp. 150–157, doi: 10.1016/j.egypro.2017.08.012.
  17. J. Díaz and L. Ramírez, “Diseño De Un Sistema De Tratamiento Y Reutilización Del Agua De La Lavadora Aplicado A Los Hogares De Bogotá D.C.,” Bogotá, D.C., 2016. doi: 10.5151/cidi2017-060.
  18. MAVDT, “TÍTULO J. Alternativas tecnológicas en agua y saneamiento para el sector rural,” in Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico, Ed. Bogotá, D.C.: Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2010, p. 284 ISBN978-958-8491- 42-4, https://minvivienda.gov.co/sites/default/files/documentos/100811_titulo_j_ras-_.pdf
  19. IDEAM and FOPAE, “Estudio de la caracterización climática de Bogotá y cuenca alta del río Tunjuelo,” Bogotá, D.C., 2008. Doi: 9789588067216.
  20. MinVivienda, Resolución 0549. Colombia: Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2015, p. 10. http://ismd.com.co/wp-content/uploads/2017/03/Resoluci%C3%B3n-549-de-2015.pdf
  21. MinAmbiente, Resolución 1207. 2014. http://parquearvi.org/wp-content/uploads/2016/11/Decreto-1207-de-2014.pdf.
  22. Ministerio de Desarrollo Económico, Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico - RAS 2000 Título B. Sistemas de Acueducto. 2010. ISBN 9789588491516 http://www.minvivienda.gov.co/Documents/ViceministerioAgua/TITULOB030714.pdf.
  23. DNP, “Perfil de Bogotá, D.C.,” TerriData, 2018. (accessed Mar. 18, 2020) https://terridata.dnp.gov.co/index-app.html#/perfiles/11001.
  24. IDEAM, Estudio de la caracterización climática de Bogotá y cuenca alta del Río Tujuelo. Bogotá, 2008.
  25. G. A. Sandoval, “Ventajas económicas del aprovechamiento del agua lluvia,” 2016 Doi: 10.19052/ed.3650.
  26. H. Blanco, L. Milagros, A. Velezmoro, and V. Aguilar, “Consumo de agua en actividades domésticas. Caso de estudio: Estudiantes de la asignatura saneamiento ambiental de la UCV,” Rev. la Fac. Ing., vol. 29, no. 1, pp. 51–56, 2014.
  27. T. Moreno and D. Quintero, “Reutilización de agua en construcciones verticales,” 2014, [Online]. Available: https://repository.ucatolica.edu.co/handle/10983/1782#.W8KNJ2WgFZE.mendeley
  28. I. Tejero, J. Suárez, A. Jácome, and J. Temprano, “Filtración Rápida,” 2014, https://www.studocu.com/ec/document/universidad-nacional-de-chimborazo/ingenieria-del-software-tecnologias-de-la-informacion/tema-filtracion-rapida-rev140211-ajb/8971408.
  29. J. Gárate, “Coeficiente de escorrentía,” 2017. Accessed: Apr. 16, 2020. [Online]. Available: http://www.atha.es/atha_archivos/manual/c4474
  30. World Bank, “Urban population (% of total population) ,” Data World Bank, 2018. https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed Feb. 28, 2020).
  31. I. Meireles, V. Sousa, K. Adeyeye, and A. Silva-Afonso, “User preferences and water use savings owing to washbasin taps retrofit: a case study of the DECivil building of the University of Aveiro,” Environ. Sci. Pollut. Res., vol. 25, no. 20, pp. 19217–19227, Jul. 2018, doi: 10.1007/s11356-017-8897-5
  32. TWN, “4 innovative world leaders in energy and water conservation,” The weather Network, Oct. 17, 2016. https://www.theweathernetwork.com/news/articles/4-innovative-world-leaders-in-energy-and-water-conservation/73113 (accessed Feb. 28, 2020).
  33. IDEAM, “Estudio Nacional del Agua 2018,” Bogotá, D.C., 2019. doi: 978-958-5489-12-7.
  34. Z. Wu, Z. Wu, H. Li, X. Zhang, and M. Jiang, “Developing a strategic framework for adopting water-saving measures in construction projects,” Environ. Geochem. Health, 2019, doi: 10.1007/s10653-019-00407-2
  35. M. Jabali, S. Okhravi, S. Eslamian, and S. Gohari, “Water conservation techniques,” in Handbook of Drought and Water Scarcity: Environmental Impacts and Analysis of Drought and Water Scarcity, 2017, pp. 501–520.
  36. Alcaldía Mayor de Bogotá D.C, “Incorporación de la vivienda de interés social (VIS) en la revisión del POT,” 2019.
  37. K. Al-Kodmany, “Sustainability and the 21st century vertical city: A review of design ap- proaches of tall buildings,” Buildings, vol. 8, no. 8, Aug. 2018, doi: 10.3390/buildings8080102.
How to Cite
Osorio-Sánchez, J., Ussa-Garzón, J., & Anzola-Osorio, F. (2022). Innovation in Water Distribution and Recirculation Systems in a Sustainable Social Housing Model. Revista Ingenierías Universidad De Medellín, 21(41), 1-19. https://doi.org/10.22395/rium.v21n41a1

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in