Energía solar fotovoltaica en instituciones educativas: caso de estudio ITM campus Robledo

Carlos E. Aristizábal | Biografía
Instituto Tecnológico Metropolitano. (MED)
Jose L. González | Biografía
Instituto Tecnológico Metropolitano

Resumen

El trabajo muestra un análisis técnico, ambiental y económico de la integración de tecnología solar fotovoltaica con la red interconectada que le suministra energía eléctrica en la actualidad al Instituto Tecnológico Metropolitano campus Robledo (ITM), para el periodo 2015-2019. Se consideran tres escenarios: 80.000, 100.000 y 120.000 kWh de demanda mensual cubierta con esta fuente renovable. Para la instalación se titulizaron módulos solares policristalinos que evitan la emisión de CO2. Para el sistema de 80.000 kWh/mes se logra una reducción del 75,79 % de las emisiones de gases efecto invernadero asociadas al consumo de electricidad del Sistema Interconectado Nacional. Con 100.000 kWh/mes, se alcanza una reducción del 95,41 % y con 120.000 kWh/mes, una del 95,58 %. En términos económicos, se calcula el indicador financiero TIR (Tasa Interna de Retorno), para un horizonte de tiempo de cinco años y considerando los ahorros en la compra de energía eléctrica como ingresos. El mejor escenario sería el de 100.000 kWh/mes, ya que este presenta la TIR más alta, inversión inicial, costos de instalación y mantenimiento más bajos, mientras que el de los 120.000 kWh/mes presenta una TIR menor y costos operativos más altos.

Referencias

  1. Al-najideen, M. I. y Alrwashdeh, S. S. (2017). Resource-Efficient Technologies Design of a Solar Photovoltaic System to Cover the Electricity Demand for the Faculty of Engineering- Mu’ tah University in Jordan. Resource-Efficient Technologies, 3(4), 440–445. https://doi.org/10.1016/j.reffit.2017.04.005.
  2. Álvarez-Espinosa, A. C., Ordóñez, D. A., Nieto, A., Wills, W., Romero, G., Calderón, S. L., Hernández, G., Argüello, R. y Delgado-Cadena, R. (2017). Evaluación económica de los compromises de Colombia en el marco de COP21. Desarrollo y Sociedad, (79), 15–54. https://doi.org/10.13043/dys.79.1.
  3. Aristizábal, C. E. y González, J. L. (2019). Impuesto al carbono en Colombia: un mecanismo tributario contra el cambio climático. Semestre Económico, 22(52), 179–202. https://doi.org/10.22395/seec.v22n52a8.
  4. Aristizábal, C. (2017). La gestión energética industrial como transición entre el uso desmedido de los recursos y la aplicación de modelos económicos basados en la eficiencia y la sostenibilidad. La Tekhné, 92(6).
  5. Ayop, R., Isa, N. M. y Tan, C. W. (2018). Components Sizing of Photovoltaic Stand-Alone System Based on Loss of Power Supply Probability. Renewable and Sustainable Energy Reviews, April, 81, 2731-2743. https://doi.org/10.1016/j.rser.2017.06.079.
  6. BancO2. (s.f.). https://banco2.com/.
  7. Becerra-Pérez, L. A., González-Díaz, R. R. y Villegas-Gutiérrez, A. C. (2020). Photovoltaic solar energy, cost benefit analysis of projects in Mexico. 5(2), 600–623.
  8. Bhandari, K. P., Collier, J. M., Ellingson, R. J. y Apul, D. S. (2015). Energy Payback Time (EPBT) and Energy Return on Energy invested (EROI) of Solar Photovoltaic systems: A Systematic Review and Meta-Analysis. Renewable and Sustainable Energy Reviews, 47, 133–141. https://doi.org/10.1016/j.rser.2015.02.057.
  9. Bonilla Madriñan, M. y Herrera Flórez, H. H. (2019). El cálculo del Factor de Emisión del Sistema Interconectado Nacional. https://www1.upme.gov.co/ServicioCiudadano/Documents/Proyectos_normativos/Factores_emision_del_S.I.N.docx#:~:text=El_cálculo_del_Factor_de,de_Emisión_de_la_Generación.
  10. Chanda, C. K. y Bose, D. (2020). Challenges of Employing Renewable Energy for Reducing Greenhouse Gases (GHGs) and Carbon Footprint. Encyclopedia of Renewable and Sustainable Materials, 3, 346-365. https://doi.org/10.1016/b978-0-12-803581-8.11170-1.
  11. Chandel, M., Agrawal, G. D., Mathur, S. y Mathur, A. (2014). Techno-Economic Analysis of Solar Photovoltaic Power Plant for Garment Zone of Jaipur City. Case Studies in Thermal Engineering, 2, 1–7. https://doi.org/10.1016/j.csite.2013.10.002.
  12. Clabeaux, R., Carbajales-dale, M., Ladner, D. y Walker, T. (2020). Assessing the Carbon Footprint of a University Campus Using a Life Cycle Assessment Approach. Journal of Cleaner Production, 273. https://doi.org/10.1016/j.jclepro.2020.122600.
  13. Congreso de la República de Colombia. (2014, 13 de mayo). Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. Diario Oficial n. ° 49.150. https://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Leyes/1687143.
  14. DIAN. (2017). Concepto Impuesto al Carbono Ley 1819 de 2016. Dirección de Impuestos y Aduanas
  15. Nacionales.
  16. Disterheft, A., Ferreira, S., Ramos, M. y Ulisses, D. M. (2012). Environmental Management Systems (EMS) implementation processes and practices in European higher education institutions e Top-down versus participatory approaches. Journal of Cleaner Production, 31, 80–90. https://doi.org/10.1016/j.jclepro.2012.02.034.
  17. EPRI y Sandia Laboratories. (2015). Budgeting for Solar PV Plant O&M: Practices & Pricing. https://prod.sandia.gov/techlib-noauth/access-control.cgi/2016/160649r.pdf.
  18. Ghaib, K. y Ben-Fares, F.-Z. (2017). A design methodology of stand-alone photovoltaic power systems for rural electrification. Energy Conversion and Management, 148, 1127–1141. https://doi.org/10.1016/j.enconman.2017.06.052.
  19. Ideam. (2015). Atlas de Radiación Solar – Interactivo. Instituto de Hidrología, Meteorología y Estudios Ambientales. http://atlas.ideam.gov.co/visorAtlasRadiacion.html.
  20. Fraunhofer Institute for Solar Energy Systems (ISE). (2017). Photovoltaics Rerport – 2017. https://
  21. www.ise.fraunhofer.de/Fraunhofer Institute for Solar Energy Systems (ISE). (2021). Photovoltaics Rerport - 2021. July. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
  22. Jiménez, R., Serebrisky, T. y Mercado, J. (2014). Dimensionando las pérdidas de electricidad en los sistemas de transmisión y distribución en América Latina y el Caribe - Reporte del Banco Interamericano de Desarrollo. Banco Interamericano de Desarrollo. https://publications.iadb.org/publications/spanish/document/Electricidad-perdida-Dimensionando-las-pérdidas-deelectricidad-en-los-sistemas-de-transmisión-y-distribución-en-América-Latina-y-el-Caribe.pdf.
  23. Lang, M. (2016). From Industry 4.0 to Energy 4.0: Future Business, Models and Legal Relations. Bird & Bird LLP. 38. https://www.lexology.com/library/detail.aspx?g=c9a01959-824b-494b-83e6-1a5b3e3c10cc.
  24. Lee, J., Chang, B., Aktas, C. y Gorthala, R. (2016). Economic Feasibility of Campus-Wide Photovoltaic Systems in New England. Renewable Energy, 99, 452–464. https://doi.org/10.1016/j.renene.2016.07.009.
  25. Liu, H., Wang, X., Yang, J., Zhou, X. y Liu, Y. (2017). The Ecological Footprint Evaluation of Low Carbon Campuses Based on Life Cycle Assessment: A case Study of Tianjin, China. Journal of Cleaner Production, 144, 266–278. https://doi.org/10.1016/j.jclepro.2017.01.017.
  26. Mewes, D., Monsalve, P., Gustafsson, I., Hasan, B., Palén, J., Nakakido, R., Capobianchi, E. y Österlund, B. (2017). Evaluation Methods for Photovoltaic Installations on Existing Buildings at the KTH Campus in Stockholm, Sweden. Energy Procedia, 115, 409–422. https://doi.org/10.1016/j.egypro.2017.05.038.
  27. Mikulčić, H., Cabezas, H., Vujanović, M. y Duić, N. (2016). Environmental assessment of different cement manufacturing processes based on Emergy and Ecological Footprint analysis. Journal of Cleaner Production, 130, 213–221. https://doi.org/10.1016/j.jclepro.2016.01.087.
  28. NREL. (2017). New Best-Practices Guide for Photovoltaic System Operations and Maintenance. National Laboratory of the U.S. Department of Energy.
  29. NREL, Sandia, Sunspec Alliance SuNLaMP y PV O&M Working Group. (2016). Best Practices in Photovoltaic System Operations and Maintenance. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2622110.
  30. Qingdao Power World Co., Ltd. (2019). Solar Panel Polycrystalline for Off Grid System. https://www.pwsolarpower.com/product/solar-panel/product_show_320.html.
  31. Schropp, R. E. I., Louwen, A., Wilfried, G. y Faaij, A. (2016). Re-assessment of Net Energy Production and Greenhouse Gas Emissions Avoidance after 40 Years of Photovoltaics Development.Nature Communications, 7, 1–9. https://doi.org/10.1038/ncomms13728.
  32. SolarReviews. (s.f.). Energy Informative. https://www.solarreviews.com/.
  33. Stock, T. y Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP, 40, 536–541. https://doi.org/10.1016/j.procir.2016.01.129.
  34. Strantzali, E. y Aravossis, K. (2016). Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews, 55, 885–898. https://doi.org/10.1016/j.rser.2015.11.021.
  35. Stylos, N. y Koroneos, C. (2014). Carbon Footprint of Polycrystalline Photovoltaic Systems. Journal of Cleaner Production, 64, 639–645. https://doi.org/10.1016/j.jclepro.2013.10.014.
  36. Sukumaran, S. y Sudhakar, K. (2017). Resource-Efficient Technologies Fully solar powered Raja Bhoj International Airport: A feasibility. Resource-Efficient Technologies, 3(3), 309–316. https://doi.org/10.1016/j.reffit.2017.02.001.
  37. Swain, R. B. y Karimu, A. (2020). Renewable electricity and sustainable development goals in the EU. World Development, 125, 104693. https://doi.org/10.1016/j.worlddev.2019.104693.
  38. To, W. M. y Lee, P. K. C. (2017). GHG Emissions from Electricity Consumption: A Case Study of Hong Kong from 2002 to 2015 and Trends to 2030. Journal of Cleaner Production, 165, 589–598. https://doi.org/10.1016/j.jclepro.2017.07.181.
  39. UPME e Ideam. (2005). Atlas de radiación solar de Colombia. In Ministerio de Minas y Energía -Unidad de Planeación Minero Energética (UPME). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Atlas+de+Radiaci?n+Solar+de+Colombia#0.
  40. UPME. (2016). La calculadora FECOC 2016. http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html.
  41. XM. (2020). En Colombia Factor de emisión de CO2 por generación eléctrica del Sistema Interconectado: 164.38 gramos de CO2 por kilovatio hora. Comunicados. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383.
  42. Zografidou, E., Petridis, K., Petridis, N. E. y Arabatzis, G. (2017). A Financial Approach to Renewable Energy Production in Greece Using Goal Programming. Renewable Energy, 108, 37–51. https://doi.org/10.1016/J.RENENE.2017.01.044.
Cómo citar
Aristizábal, C. E., & González, J. L. (2022). Energía solar fotovoltaica en instituciones educativas: caso de estudio ITM campus Robledo. Semestre Económico, 24(57), 30-57. https://doi.org/10.22395/seec.v24n57a2

Descargas

La descarga de datos todavía no está disponible.

Send mail to Author


Send Cancel

Estamos indexados en