Energia solar fotovoltaica em instituições de ensino: estudo de caso ITM campus Robledo

Conteúdo do artigo principal

Carlos E. Aristizábal
https://orcid.org/0000-0002-8970-6389
Jose L. González

Resumo

The work shows a technical, environmental and economic analysis of the integration of photovoltaic solar technology, with the interconnected network that currently supplies electricity to the Metropolitan Technological Institute, Robledo campus, for the 2015-2019 period, and considering three scenarios; 80,000, 100,000 and 120,000 kWh of monthly demand covered with this renewable source. The installation, using polycrystalline solar modules, avoids the emission of large amounts of CO2. For the 80,000 kWh / month system, a 75,79 % reduction in greenhouse gasses emissions associated with electricity consumption from the national interconnected system is achieved. With 100,000 kWh/month, a reduction of 95,41 % is achieved and with 120,000 kWh / month, a reduction of 95,58 %. In economic terms, the financial indicator IRR (internal rate of return) is calculated for a time horizon of 5 years and considering the savings in the purchase of electricity as income. The best scenario would be 100,000 kWh / month, since this presents the highest IRR, initial investment, lower installation and maintenance costs, while that of 120,000 kWh / month presents a lower IRR and higher operating costs.


Como Citar
Aristizábal, C. E., & González, J. L. (2022). Energia solar fotovoltaica em instituições de ensino: estudo de caso ITM campus Robledo. Semestre Económico, 24(57), 30–57. https://doi.org/10.22395/seec.v24n57a2

Detalhes do artigo

Referências

Al-najideen, M. I. y Alrwashdeh, S. S. (2017). Resource-Efficient Technologies Design of a Solar Photovoltaic System to Cover the Electricity Demand for the Faculty of Engineering- Mu’ tah University in Jordan. Resource-Efficient Technologies, 3(4), 440–445. https://doi.org/10.1016/j.reffit.2017.04.005.

Álvarez-Espinosa, A. C., Ordóñez, D. A., Nieto, A., Wills, W., Romero, G., Calderón, S. L., Hernández, G., Argüello, R. y Delgado-Cadena, R. (2017). Evaluación económica de los compromises de Colombia en el marco de COP21. Desarrollo y Sociedad, (79), 15–54. https://doi.org/10.13043/dys.79.1.

Aristizábal, C. E. y González, J. L. (2019). Impuesto al carbono en Colombia: un mecanismo tributario contra el cambio climático. Semestre Económico, 22(52), 179–202. https://doi.org/10.22395/seec.v22n52a8.

Aristizábal, C. (2017). La gestioÌn energeÌtica industrial como transicioÌn entre el uso desmedido de los recursos y la aplicacioÌn de modelos econoÌmicos basados en la eficiencia y la sostenibilidad. La Tekhné, 92(6).

Ayop, R., Isa, N. M. y Tan, C. W. (2018). Components Sizing of Photovoltaic Stand-Alone System Based on Loss of Power Supply Probability. Renewable and Sustainable Energy Reviews, April, 81, 2731-2743. https://doi.org/10.1016/j.rser.2017.06.079.

BancO2. (s.f.). https://banco2.com/.

Becerra-Pérez, L. A., González-Díaz, R. R. y Villegas-Gutiérrez, A. C. (2020). Photovoltaic solar energy, cost benefit analysis of projects in Mexico. 5(2), 600–623.

Bhandari, K. P., Collier, J. M., Ellingson, R. J. y Apul, D. S. (2015). Energy Payback Time (EPBT) and Energy Return on Energy invested (EROI) of Solar Photovoltaic systems: A Systematic Review and Meta-Analysis. Renewable and Sustainable Energy Reviews, 47, 133–141. https://doi.org/10.1016/j.rser.2015.02.057.

Bonilla Madriñan, M. y Herrera Flórez, H. H. (2019). El cálculo del Factor de Emisión del Sistema Interconectado Nacional. https://www1.upme.gov.co/ServicioCiudadano/Documents/Proyectos_normativos/Factores_emision_del_S.I.N.docx#:~:text=El_cálculo_del_Factor_de,de_Emisión_de_la_Generación.

Chanda, C. K. y Bose, D. (2020). Challenges of Employing Renewable Energy for Reducing Greenhouse Gases (GHGs) and Carbon Footprint. Encyclopedia of Renewable and Sustainable Materials, 3, 346-365. https://doi.org/10.1016/b978-0-12-803581-8.11170-1.

Chandel, M., Agrawal, G. D., Mathur, S. y Mathur, A. (2014). Techno-Economic Analysis of Solar Photovoltaic Power Plant for Garment Zone of Jaipur City. Case Studies in Thermal Engineering, 2, 1–7. https://doi.org/10.1016/j.csite.2013.10.002.

Clabeaux, R., Carbajales-dale, M., Ladner, D. y Walker, T. (2020). Assessing the Carbon Footprint of a University Campus Using a Life Cycle Assessment Approach. Journal of Cleaner Production, 273. https://doi.org/10.1016/j.jclepro.2020.122600.

Congreso de la República de Colombia. (2014, 13 de mayo). Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. Diario Oficial n. ° 49.150. https://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Leyes/1687143.

DIAN. (2017). Concepto Impuesto al Carbono Ley 1819 de 2016. Dirección de Impuestos y Aduanas

Nacionales.

Disterheft, A., Ferreira, S., Ramos, M. y Ulisses, D. M. (2012). Environmental Management Systems (EMS) implementation processes and practices in European higher education institutions e Top-down versus participatory approaches. Journal of Cleaner Production, 31, 80–90. https://doi.org/10.1016/j.jclepro.2012.02.034.

EPRI y Sandia Laboratories. (2015). Budgeting for Solar PV Plant O&M: Practices & Pricing. https://prod.sandia.gov/techlib-noauth/access-control.cgi/2016/160649r.pdf.

Ghaib, K. y Ben-Fares, F.-Z. (2017). A design methodology of stand-alone photovoltaic power systems for rural electrification. Energy Conversion and Management, 148, 1127–1141. https://doi.org/10.1016/j.enconman.2017.06.052.

Ideam. (2015). Atlas de Radiación Solar – Interactivo. Instituto de Hidrología, Meteorología y Estudios Ambientales. http://atlas.ideam.gov.co/visorAtlasRadiacion.html.

Fraunhofer Institute for Solar Energy Systems (ISE). (2017). Photovoltaics Rerport – 2017. https://

www.ise.fraunhofer.de/Fraunhofer Institute for Solar Energy Systems (ISE). (2021). Photovoltaics Rerport - 2021. July. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.

Jiménez, R., Serebrisky, T. y Mercado, J. (2014). Dimensionando las pérdidas de electricidad en los sistemas de transmisión y distribución en América Latina y el Caribe - Reporte del Banco Interamericano de Desarrollo. Banco Interamericano de Desarrollo. https://publications.iadb.org/publications/spanish/document/Electricidad-perdida-Dimensionando-las-pérdidas-deelectricidad-en-los-sistemas-de-transmisión-y-distribución-en-América-Latina-y-el-Caribe.pdf.

Lang, M. (2016). From Industry 4.0 to Energy 4.0: Future Business, Models and Legal Relations. Bird & Bird LLP. 38. https://www.lexology.com/library/detail.aspx?g=c9a01959-824b-494b-83e6-1a5b3e3c10cc.

Lee, J., Chang, B., Aktas, C. y Gorthala, R. (2016). Economic Feasibility of Campus-Wide Photovoltaic Systems in New England. Renewable Energy, 99, 452–464. https://doi.org/10.1016/j.renene.2016.07.009.

Liu, H., Wang, X., Yang, J., Zhou, X. y Liu, Y. (2017). The Ecological Footprint Evaluation of Low Carbon Campuses Based on Life Cycle Assessment: A case Study of Tianjin, China. Journal of Cleaner Production, 144, 266–278. https://doi.org/10.1016/j.jclepro.2017.01.017.

Mewes, D., Monsalve, P., Gustafsson, I., Hasan, B., Palén, J., Nakakido, R., Capobianchi, E. y Österlund, B. (2017). Evaluation Methods for Photovoltaic Installations on Existing Buildings at the KTH Campus in Stockholm, Sweden. Energy Procedia, 115, 409–422. https://doi.org/10.1016/j.egypro.2017.05.038.

MikulÄić, H., Cabezas, H., Vujanović, M. y Duić, N. (2016). Environmental assessment of different cement manufacturing processes based on Emergy and Ecological Footprint analysis. Journal of Cleaner Production, 130, 213–221. https://doi.org/10.1016/j.jclepro.2016.01.087.

NREL. (2017). New Best-Practices Guide for Photovoltaic System Operations and Maintenance. National Laboratory of the U.S. Department of Energy.

NREL, Sandia, Sunspec Alliance SuNLaMP y PV O&M Working Group. (2016). Best Practices in Photovoltaic System Operations and Maintenance. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2622110.

Qingdao Power World Co., Ltd. (2019). Solar Panel Polycrystalline for Off Grid System. https://www.pwsolarpower.com/product/solar-panel/product_show_320.html.

Schropp, R. E. I., Louwen, A., Wilfried, G. y Faaij, A. (2016). Re-assessment of Net Energy Production and Greenhouse Gas Emissions Avoidance after 40 Years of Photovoltaics Development.Nature Communications, 7, 1–9. https://doi.org/10.1038/ncomms13728.

SolarReviews. (s.f.). Energy Informative. https://www.solarreviews.com/.

Stock, T. y Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP, 40, 536–541. https://doi.org/10.1016/j.procir.2016.01.129.

Strantzali, E. y Aravossis, K. (2016). Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews, 55, 885–898. https://doi.org/10.1016/j.rser.2015.11.021.

Stylos, N. y Koroneos, C. (2014). Carbon Footprint of Polycrystalline Photovoltaic Systems. Journal of Cleaner Production, 64, 639–645. https://doi.org/10.1016/j.jclepro.2013.10.014.

Sukumaran, S. y Sudhakar, K. (2017). Resource-Efficient Technologies Fully solar powered Raja Bhoj International Airport: A feasibility. Resource-Efficient Technologies, 3(3), 309–316. https://doi.org/10.1016/j.reffit.2017.02.001.

Swain, R. B. y Karimu, A. (2020). Renewable electricity and sustainable development goals in the EU. World Development, 125, 104693. https://doi.org/10.1016/j.worlddev.2019.104693.

To, W. M. y Lee, P. K. C. (2017). GHG Emissions from Electricity Consumption: A Case Study of Hong Kong from 2002 to 2015 and Trends to 2030. Journal of Cleaner Production, 165, 589–598. https://doi.org/10.1016/j.jclepro.2017.07.181.

UPME e Ideam. (2005). Atlas de radiación solar de Colombia. In Ministerio de Minas y Energía -Unidad de Planeación Minero Energética (UPME). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Atlas+de+Radiaci?n+Solar+de+Colombia#0.

UPME. (2016). La calculadora FECOC 2016. http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html.

XM. (2020). En Colombia Factor de emisión de CO2 por generación eléctrica del Sistema Interconectado: 164.38 gramos de CO2 por kilovatio hora. Comunicados. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383.

Zografidou, E., Petridis, K., Petridis, N. E. y Arabatzis, G. (2017). A Financial Approach to Renewable Energy Production in Greece Using Goal Programming. Renewable Energy, 108, 37–51. https://doi.org/10.1016/J.RENENE.2017.01.044.

Biografia do Autor

Carlos E. Aristizábal, Instituto Tecnológico Metropolitano. (MED)

Ingeniero químico, Universidad Nacional de Colombia, Medellín, Colombia. Docente e investigador de la Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia. Miembro del Grupo de Investigación Química Básica y Ambiente (Alquimia), Medellín, Colombia. Correo electrónico: carlosaristizabal207157@correo.itm.edu.co. Orcid: https://orcid.org/0000-0002-8970-6389.

Jose L. González, Instituto Tecnológico Metropolitano

Ingeniero civil, Universidad Nacional de Colombia, Medellín, Colombia. Ingeniero sanitario, Universidad de Antioquia, Medellín, Colombia. Especialista en Gestión Ambiental, Universidad Nacional de Colombia, Medellín, Colombia. Investigador y jefe del Departamento de Ciencias Ambientales y de la Construcción, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia. Miembro del Grupo de Investigación Química Básica y Ambiente (Alquimia), Medellín, Colombia. Correo electrónico: josegonzalez@itm.edu.co. Orcid: https://orcid.org/0000-0002-0625-3362.