Web Service Adaptation for the Customization of Early Alerts in Agriculture

Keywords: Web service adaptation, Early warning systems, Enterprise service bus, Complex event processing


Early warning systems are designed to inform the largest number of users, such as a country or a region, about a risky situation. However, in specific domains such as agriculture, it is commonly required for these alerts to be more specific according to the crops location and their properties. Consequently, the web services of these systems must be adapted. On the other hand, the enterprise services bus, with its mediation capabilities (such as message transformation and routing), and complex event processing with their monitoring characteristics, can be integrated to meet the adaptation requirements of web services at runtime. This paper presents an improvement for an early warning system for coffee production that, according to the area in which a crop is located and its phenology, manages the adaptation of alerts for coffee rust, based on the integration of an enterprise services bus and a complex events processing.

  • References

    [1] G. C. Gómez, “Desarrollos científicos de Cenicafé en la última década”, Rev. Acad. Colombiana Cienc. Exactas Físicas Nat., vol. 1, n.° 30, pp. 89-100, 2005.

    [2] A. de Camargo, and A. R. Pereira, Agrometeorology of the coffee crop, Geneva: World Meteorology Organization, 1994.

    [3] C. De León, Enfermedades del maíz: guía para su identificación en el campo, México: CIMMYT, 1974.

    [4] F. Gauhl et al., “Multilocational evaluation of black Sigatoka resistance i n banana a nd plantain”, IITA Res. Guide, n.° 47, 1993.

    [5] G. N. Agrios, Fitopatología, México: Uteha/Noriega.

    [6] A. García, and D. Obín, “Sistemas de Alerta Temprana para Prevención de Enfermedades y Plagas”, 2013. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=4934270&orden=1&info=link

    [7] A. Wiltshire, “Developing early warning systems: A checklist”, en Proc. 3rd Int. Conf. Early Warning (EWC), 2006.

    [8] J. Ocharan, “Sistemas de Alerta Temprana. Fotografía actual y retos”, Cuad. Int. Tecnol. Para El Desarro. Hum., n.° 6, p. 2, 2007.

    [9] P. Flores N., J. Lerdon F., R. Bravo H., and I. Acuña, “Factibilidad de implementar pronosticadores automatizados para controlar el tizón tardío de la papa en el sur de Chile”, Agro Sur, vol. 36, n.° 1, pp. 37-42, 2008. DOI: 10.4206/agrosur.2008.v36n1-06.

    [10] M. Barquero Miranda, “Sistema de alerta temprana para el ojo de gallo”, Rev. Inf. 2012, 2012.

    [11] M. L. Gleason et al., “Obtaining weather data for input to crop disease-warning systems: leaf wetness duration as a case study”, Sci. Agric., vol. 65, n.° SPE, pp. 76-87, 2008. DOI: 10.1590/S0103-90162008000700013.

    [12] M. Bonett, “Personalization of Web Services: Opportunities and Challenges”, Ariadne, n.° 28, 2001.

    [13] V. García Gutiérrez, “Sistema para la adaptación de servicios a nivel de presentación y de navegación en portales web”, 2013.

    [14] L. González, and R. Ruggia, “Towards dynamic adaptation within an ESB-based service infrastructure layer”, en Proceedings of the 3rd International workshop on Monitoring, Adaptation and Beyond, 2010, pp. 40–47. https://doi.org/10.1145/1929566.1929572

    [15] L. González, J. L. Laborde, M. Galnares, M. Fenoglio, and R. Ruggia, “An adaptive enterprise service bus infrastructure for service based systems”, en Service-Oriented Computing–ICSOC 2013 Workshops, 2013, pp. 480–491. https://doi.org/10.1007/978-3-319-06859-6_42

    [16] G. Ortiz, J. Boubeta-Puig, A. García de Prado, and I. Medina-Bulo, “Towards event-driven context-aware web services”, Adapt. Web Serv. Modul. Reusable Softw. Dev. Tactics Solut., pp. 148–159, 2012.

    [17] L. González, and G. Ortiz, “An Event-Driven Integration Platform for Context-Aware Web Services.”, J UCS, vol. 20, n.° 8, pp. 1071–1088, 2014. http://dx.doi.org/10.3217/jucs-020-08-1071

    [18] L. González, and G. Ortiz, “An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services”, en Advances in Service-Oriented and Cloud Computing, Springer, 2013, pp. 360–369. https://doi.org/10.1007/978-3-642-45364-9_29

    [19] Service Architecture, “Service-Oriented Architecture (SOA) Definition”. [internet]. Disponible en http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html.

    [20] S.-T. Yuan, and M.-R. Lu, “An value-centric event driven model and architecture: A case study of adaptive complement of SOA for distributed care service delivery”, Expert Syst. Appl., vol. 36, n.° 2, Part 2, pp. 3671-3694, 2009. DOI: 10.1016/j.eswa.2008.02.024.

    [21] L. González, Plataforma ESB Adaptativa para Sistemas Basados en Servicios, Montevideo: Universidad de la República, 2011.

    [22] R. Kazhamiakin, “Adaptation and Monitoring in S-Cube: Global Vision and Roadmap”, en Workshop on Service Monitoring, Adaptation and Beyond, 2009, p. 67.

    [23] A. Gaitán et al., “Evento de La Niña en Colombia: recomendaciones para la caficultura”, 2016. Evento de La Niña en Colombia: Recomendaciones para la caficultura. Centro Nacional de Investigaciones de Café (Cenicafé).

    [24] D. C. Corrales, A. Ledezma, A. J. Peña, J. Hoyos, A. Figueroa, and J. C. Corrales, “Un nuevo conjunto de datos para la detección de roya en cultivos de café Colombianos basado en clasificadores”, Sist. Telemática, vol. 12, n.° 29, pp. 9-23, 2014. DOI: 10.18046/syt.v12i29.1802.

    [25] D. C. Corrales, A. Figueroa, A. Ledezma, and J. C. Corrales, “An Empirical Multi-classifier for Coffee Rust Detection in Colombian Crops”, en Computational Science and Its Applications – ICCSA 2 015; 15th International Conference, Canadá, 2015, pp. 60-74. DOI: 10.1007/978-3-319-21404-7_5.

    [26] D. C. Corrales, A. F. Casas, A. Ledezma, and J. C. Corrales, “Two-Level Classifier Ensembles for Coffee Rust Estimation in Colombian Crops”, Int. J. Agric. Environ. Inf. Syst. IJAEIS, vol. 7, n.° 3, pp. 41-59, 2016. DOI: 10.4018/IJAEIS.2016070103.

    [27] E. Lasso, T. T. Thamada, C. A. A. Meira, and J. C. Corrales, “Graph Patterns as Representation of Rules Extracted from Decision Trees for Coffee Rust Detection”, en Metadata and Semantics Research; E. Garoufallou, R. J. Hartley, y P. Gaitanou, eds., New York: Springer, 2015, pp. 405-414. DOI: 10.1007/978-3-319-24129-6_35.

    [28] C. A. Meira, L. H. Rodrigues, and S. A. Moraes, “Análise da epidemia da ferrugem do cafeeiro com árvore de decisão”, Trop. Plant Pathol., vol. 33, n.° 2, pp. 114-124, 2008.

    [29] C. A. A. Meira, L. H. A. Rodrigues, and S. A. de Moraes, “Modelos de alerta para o controle da ferrugem-do-cafeeiro em lavouras com alta carga pendente”, Pesqui. Agropecuária Bras., vol. 44, pp. 233-242, 2009. DOI: 10.1590/S0100-204X2009000300003.

    [30] M. E. Cintra, C. A. A. Meira, M. C. Monard, H. A. Camargo, and L. H. A. Rodrigues, “The use of fuzzy decision trees for coffee rust warning in Brazilian crops”, en 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), 2011, pp. 1347-1352.

    [31] C. A. Rivillas Osorio, C. A. Serna Giraldo, M. A. Cristancho Ardila, and A. L. Gaitán Bustamante, “La Roya del Cafeto en Colombia Impacto, manejo y costos del control”, 2011. Cenicafé, 2011. 51 p. (Boletín Técnico No. 36).

    [32] V. Ramírez et al., “Variabilidad climática y la floración del café en Colombia”, 2013. Variabilidad climática y la floración del café en Colombia. Centro Nacional de Investigaciones de Café (Cenicafé).

    [33] E. Lasso, O. Valencia, D. C. Corrales, I. D. López, A. Figueroa, and J. C. Corrales, “A Cloud-Based Platform for Decision Making Support in Colombian Agriculture: A Study Case in Coffee Rust”, en International Conference of ICT for Adapting Agriculture to Climate Change, 2017, pp. 182-196. DOI: 10.1007/978-3-319-70187-5_14.

    [34] D. Dossot, J. D’Emic, and V. Romero, Mule in action, Greenwich: Manning, 2014.

    [35] EsperTech, “Products”. [internet]. Available: http://www.espertech.com/products/.

    [36] A. Goncalves, Beginning Java EE 6 with GlassFish 3, Birmingham: Apress, 2010.

    [37] B. Momjian, PostgreSQL: introduction and concepts, vol. 192, New York: Addison-Wesley, 2001.

    [38] Z. Liang-Jie, Web Services Research and Practices, Hershey: Idea Group Inc., 2008.

    [39] R. Cimperman, UAT defined: a guide to practical user acceptance testing, Upper Saddle River: Addison-Wesley Professional, 2006.

    [40] ResearchGate, “PROCAGICA by Jacques Avelino - Research Project on ResearchGate”.

    [internet]. Available: https://www.researchgate.net/project/PROCAGICA.

  • Author Biographies

    Oscar Ricardo Valencia Aguilar, Universidad del Cauca

    Ingeniero de Sistemas, Universidad del Cauca. Ms(c) en Ingeniería Telemática, Universidad del Cauca.
    Investigador, Universidad del Cauca, Grupo Ingeniería Telemática

    Emmanuel Gerardo Lasso Sambony, Universidad del Cauca

    Ingeniero en Electrónica y Telecomunicaciones, MsC. en Ingeniería Telemática y Ph. D. (c) en Ingeniería
    Telemática, Universidad del Cauca. Investigador, Universidad del Cauca, Grupo de Ingeniería Telemática.

    Juan Carlos Corrales Muñoz, Universidad del Cauca

    Ingeniero en Electrónica y Telecomunicaciones y MsC. en Ingeniería Telemática, Universidad del Cauca. Ph.
    D. en Ciencias de la Computación, Université de Versailles Saint-Quentin-en-Yvelines. Docente de planta,
    Universidad del Cauca, director del Grupo de Ingeniería Telemática

How to Cite
Valencia Aguilar, O. R., Lasso Sambony, E. G., & Corrales Muñoz, J. C. (2020). Web Service Adaptation for the Customization of Early Alerts in Agriculture. Revista Ingenierías Universidad De Medellín, 19(37), 239-257. https://doi.org/10.22395/rium.v19n37a14


Download data is not yet available.