Prototype and Method for Crops Analysis in the Visible and Infrared Spectrum from a Multirotor Air Vehicle

  • Julian Andres Bolaños Universidad del Cauca
  • Liseth Viviana Campo Arcos Universidad del Cauca
  • Juan Carlos Corrales Muñoz Universidad del Cauca
Keywords: Infrared spectrum, unmanned aerial vehicles, NDVI, plant health


Plant health has a direct impact on the quality and quantity of agricultural products. Due to this fact, farmers must monitor crop conditions frequently. However, the current tools for achieving this are complex and inaccessible. Therefore, this article proposes a method for the characterization of crops that allows to monitor the plants using photographs in the visible and infrared spectrum acquired from a multi-rotor air vehicle, using low-cost cameras and free use tools for designing a prototype of processing information. The characterization is performed by identifying the normalized difference vegetation index (NDVI) in the photographic mosaics of the crops. This index provides information about plant health: Consequently, it is calculated and represented on a NDVI map, where the status of a crop is analyzed. The highest values of NDVI represent healthy plants, and the lowest do so for plants with problems, water, or others. The proposed  ethod allows the monitoring of crops in a temporary and spatial form, letting a producer to adopt measures that help the optimization of resources.

  • References

    [1] A. Samad, and A. Manan, “Aerial mapping using high resolution digital camera and unmanned aerial vehicle for Geographical Information System”, in 2010 6th International Colloquium on Signal Processing and its Applications (CSPA), 2010. DOI: 10.1109/CSPA.2010.5545303.

    [2] J. Bendig, K. Yu, H. Aasen, A. Bolten, S. Bennertz, J. Broscheit, M. Gnyp, and G. Bareth, “Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley,” International Journal of Applied Earth Observation and Geoinformation, vol. 39, pp. 79-87, 2015. DOI: 10.1016/j.jag.2015.02.012

    [3] C. Gonzaga Aguilar, “Aplicación de índices de vegetación derivados de imágenes satelitales Landsat 7 ETM+ y ASTER para la caracterización de la cobertura vegetal en la zona centro de la provincia de Loja, Ecuador,” Universidad Nacional de La Plata, 2014. [Online]. Available:

    [4] E. R. Hunt, C. S. Daughtry, S. B. Mirsky, and W. D. Hively, “Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications,” IEEE Journal of elected Topics in Applied Earth Observations and Remote Sensing, pp. 4566-4571, 2014. DOI: 10.1109/JSTARS.2014.2317876.

    [5] W. Wei, Y. Xia, Y.-c. TIAN, X.-j. LIU, N. Jun, W.-x. CAO, and Z. Yan, “Common spectral bands and optimum vegetation indices for monitoring leaf nitrogen accumulation in rice and wheat,” Journal of Integrative Agriculture, pp. 2001-2012, 2012. DOI: 10.1016/S2095-3119(12)60457-2.

    [6] W. Li, Z. Niu, H. Chen, D. Li, M. Wu and W. Zhao, “Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system,” Ecological Indicators, pp. 637-648, 2016. DOI: 10.1016/j.ecolind.2016.03.036.

    [7] A. Gitelson, Y. Kaufman, R. Stark, and D. Rundquist, “Novel algorithms for remote estimation of vegetation fraction,” Remote Sensing of Environment, pp. 76-87, 2002. DOI: 10.1016/S0034-4257(01)00289-9.

    [8] Banco Mundial, “Agricultura y desarrollo-rural,” 2016. [Online]. Available: http://datos.

    [9] Banco Mundial, “Indicadores de desarrollo del mundo,” 2015. [Online]. Available:

    [10] ArcGis, “Función NDVI,” 2016. [Online]. Available:

    [11] Universidad de Piura, “Biblioteca Universidad de Piura”. [Online]. Available:

    [12] V. Dworak, J. Selbeck, K.-H. Dammer, M. Hoffmann, A. A. Zarezadeh, and C. Bobda, “Strategy for the development of a smart NDVI camera system for outdoor plant detection

    and agricultural embedded systems,” Multidisciplinary Digital Publishing Institute, vol. 13, no. 2, pp. 1523-1538, 2013. DOI: 10.3390/s130201523.

    [13] B. José, M. Nicolás, C. Danilo and A. Eduardo, “Multispectral NDVI aerial image system for vegetation analysis by using a consumer camera,” in Electronics and Computing (ROPEC), 2014 IEEE International Autumn Meeting on Power, pp. 1-6, 2014. DOI: 10.1109/ROPEC.2014.7036302.

    [14] M. Ghazal, Y. Al Khalil and H. Hajjdiab, “UAV-based remote sensing for vegetation cover estimation using NDVI imagery and level sets method,” in 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 332-337, 2015. DOI: 10.1109/ISSPIT.2015.7394354.

    [15] N. R. Rodrigo Andrés, “Fotografía Aérea,” 2005. [Online]. Available: http://cybertesis.uach. cl/tesis/uach/2005/bmfcin415f/doc/bmfcin415f.pdf.

    [16] A. Thomas, “Aerial Photography,” University of the Western Cape. [Online]. Available:

    [17] A. Díaz, and M. A. Cisternas, “Fotografías Aéreas Aspectos Técnicos”. [Online]. Available:

    [18] OpenCV, “OpenCV Image Matching”. [Online]. Available:

    [19] V. Andreo, “Remote Sensing and Geographic Information Systems in Precision Farming,”2013. [Online]. Available:

    [20] Humboldt State University, “Spectral Reflectance”. [Online]. Available:

    [21] University of Oldenburg, “Spectral Reflectance Properties”. [Online]. Available:

    [22] L. C. Velásquez, J. Argueta and K. Mazariegos, “Implementation of a low cost aerial vehicle for crop analysis in emerging countries,” IEEE Journal, pp. 21-27, 2016.

    [23] B. Ortiz, J. Shaw, and J. Fulton, “Basics of crop sensing,” Alabama Cooperative Extension System, pp. 1-3, 2011.

    [24] A. A. Gitelson, Y. Gritz, and M. N. Merzlyak, “Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” Journal of Plant Physiology, vol. 160, no. 3, pp. 271-282, 2003. DOI:10.1078/0176-1617-00887.

    [25] D. M. Gates, H. J. Keegan, J. C. Schleter, and V. R. Weidner, “Spectral properties of plants,” Applied Optics, vol. 4, no. 1, pp. 11-20, 1965. DOI: 10.1364/AO.4.000011.

    [26] Municipio de Timbío, “Información General Timbío”. [Online]. Available:

    [27] M. Research, “Image Composite Editor,” 2015. [Online]. Available:

  • Author Biographies

    Julian Andres Bolaños, Universidad del Cauca

    Ingeniero en electrónica y telecomunicaciones, Universidad del Cauca. Miembro del Grupo de investigación
    en Ingeniería Telemática, FIET Sector Tulcán, Universidad del Cauca.

    Liseth Viviana Campo Arcos, Universidad del Cauca

    Msc. y estudiante de Doctorado en Ingeniería Telemática. Investigador de la Universidad del Cauca, FIET Sector Tulcán.

    Juan Carlos Corrales Muñoz, Universidad del Cauca

    Ph. D., docente investigador de la Universidad del Cauca, FIET Sector Tulcán.

How to Cite
Bolaños, J. A., Campo Arcos, L. V., & Corrales Muñoz, J. C. (2020). Prototype and Method for Crops Analysis in the Visible and Infrared Spectrum from a Multirotor Air Vehicle. Revista Ingenierías Universidad De Medellín, 19(37), 259-281.


Download data is not yet available.

Most read articles by the same author(s)