Testbed for Sub-Nyquist Wideband Spectrum Monitoring

  • Juan Felipe Medina Lee Universidad del Quindío
  • Alexander López-Parrado Universidad del Quindío
  • Alexander Vera Tasamá Universidad del Quindío
  • Duvier de Jesús Bohórquez Palacio Universidad del Quindío
Keywords: Compressed sensing, sampling methods, information systems, system-on-chip, analog processing circuits, web services


Radioelectric spectrum management is a concern for today’s world, mainly due to the misuse that has been given to this resource through the years, especially on the UHF band. To address this problem, a testbed for sub-Nyquist Wideband Spectrum Monitoring was built, that includes a web interface to remotely measure occupancy of the UHF band.

To achieve the above, an RF interface that allows tuning UHF frequencies with an instantaneous bandwidth of 95 MHz was built. Afterwards, a Random Demodulator was connected, and then an embedded system performed sub--Nyquist sampling and spectrum recovery. The embedded system connected to an information system that serves a web page, through which remote users can perform UHF band monitoring.

Experimental results showed that spectrum sensing can be achieved by using different algorithms on certain sparse spectra. In addition, the aforementioned web interface allowed simultaneous user connections, in order to perform independent measurements by sharing a hardware subsystem.

  • References

    [1] D. Cabric, I. D. O’Donnell, M. S.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios”, IEEE Circuits Syst. Mag., vol. 6, n.° 2, pp. 30–45, 2006, DOI: 10.1109/MCAS.2006.1648988.

    [2] European Telecommunications Standards Institute, “ETSI EN 300 744 Digital Video Broadcasting (DVB); Framing structure, channel coding and odulation for digital terrestrial television.” 2009.

    [3] IEEE, “IEEE 802.22-2011, Wireless Regional Area Networks (WRAN) - Specific requirements Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands”, 2011, DOI: 10.1109/IEEESTD.2011.5951707.

    [4] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal”, IEEE Pers. Commun., vol. 6, n.° 4, pp. 13–18, 1999, DOI: 10.1109/98.788210.

    [5] V. T. Nguyen, F. Villain, and Y. Le Guillou, “Cognitive Radio RF: Overview and Challenges”, VLSI Des., vol. 2012, pp. 1-13, May 2012, DOI: 10.1155/2012/716476.

    [6] C.-P. Yen, Y. Tsai, and X. Wang, “Wideband Spectrum Sensing Based on Sub-Nyquist Sampling”, IEEE Trans. Signal Process., vol. 61, n.° 12, pp. 3028–3040, Jun. 2013, DOI: 10.1109/TSP.2013.2251342.

    [7] P. Palacios-Jativa and C. Saavedra-Arancibia, “Comparison of spectrum detection methods applied to cognitive mobile radio networks”, Rev. Cienc. E Investig., vol. 3, n.° 10, pp. 16–20, 2018, DOI: 10.26910/issn.2528-8083vol3iss10.2018pp16-20p.

    [8] M. M. Mabrook, G. A. Fahmy, A. I. Hussein, and M. A. Abdelghany, “Novel adaptive nonuniform sub-Nyquist sampling technique for cooperative wideband spectrum sensing”, in 2016 12th International Computer Engineering Conference (ICENCO), Dec. 2016, pp. 20–25, DOI: 10.1109/ICENCO.2016.7856439.

    [9] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and Y. Massoud, “Theory and Implementation of an Analog-to-Information Converter using Random Demodulation”, in 2007 IEEE International Symposium on Circuits and Systems, May 2007, pp. 1959–1962, DOI: 10.1109/ISCAS.2007.378360.

    [10] S. Kirolos, T. Ragheb, J. Laska, M. F. Duarte, Y. Massoud, and R. G. Baraniuk, “Practical Issues in Implementing Analog-to-Information Converters”, in 2006 6th International Workshop on System on Chip for Real Time Applications, Dec. 2006, pp. 141–146, DOI: 10.1109/IWSOC.2006.348224.

    [11] T. Ragheb, J. N. Laska, H. Nejati, S. Kirolos, R. G. Baraniuk, and Y. Massoud, “A prototype hardware for random demodulation based compressive analog-to-digital conversion”, in Midwest Symposium on Circuits and Systems, 2008, pp. 37-40, DOI: 10.1109/MWSCAS.2008.4616730.

    [12] D. E. Bellasi, L. Bettini, C. Benkeser, T. Burger, Q. Huang, and C. Studer, “VLSI design of a monolithic compressive-sensing wideband analog-to-information converter”, IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 3, n.° 4, pp. 552–565, 2013, DOI: 10.1109/JETCAS.2013.2284618.

    [13] M. Wakin et al., “A Nonuniform Sampler for Wideband Spectrally-Sparse Environments”, IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, n.° 3, pp. 516–529, Sep. 2012, DOI: 10.1109/JETCAS.2012.2214635.

    [14] D. Cohen, S. Tsiper, and Y. C. Eldar, “Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware”, IEEE Signal Process. Mag., vol. 35, n.° 1, pp. 137–166, 2018,DOI: 10.1109/MSP.2017.2740966.

    [15] D. J. K. Adams, “A Practical Implementation of the Modulated Wideband Converter Compressive Sensing Receive Architecture”, Stanford University, 2016.

    [16] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to Digital at Sub-Nyquist Rates”, IET Circuits, Devices & Systems, vol. 5, n.° 1, pp. 8-20, January 2011, DOI: 10.1049/iet-cds.2010.0147.

    [17] Zhang Jingchao, Liu Peizhuo, Fu Ning, and Peng Xiyuan, “Prototype design of multicoset sampling based on compressed sensing”, in 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), 2015, pp. 1303–1308, DOI: 10.1109/ICEMI.2015.7494524.

    [18] M. Yaghoobi, B. Mulgrew, and M. E. Davies, “An efficient implementation of the lowcomplexity multi-coset sub-Nyquist wideband radar electronic surveillance”, in 2014 Sensor Signal Processing for Defence (SSPD), Sep. 2014, pp. 1-5, DOI: 10.1109/SSPD.2014.6943320.

    [19] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi, “GHz-wide sensing and decoding using the sparse Fourier transform”, in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, Apr. 2014, pp. 2256-2264, DOI: 10.1109/INFOCOM.2014.6848169.

    [20] A. López-Parrado and J. Velasco-Medina, “Cooperative Wideband Spectrum Sensing Based on Sub-Nyquist Sparse Fast Fourier Transform”, IEEE Trans. Circuits Syst. II Express Briefs, vol. 63, n.° 1, pp. 39-43, 2016, DOI: 10.1109/TCSII.2015.2483278.

    [21] A. B. Korucu, O. Cakar, Y. K. Alp, G. Gok, and O. Arikan, “Compressive Digital Receiver: First hardware implementation results”, in 2018 26th Signal Processing and Communications Applications Conference (SIU), May 2018, pp. 1-4, DOI: 10.1109/SIU.2018.8404634.

    [22] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: A high-end reconfigurable computing system”, IEEE Des. Test Comput., vol. 22, n.° 2, pp. 114-125, Feb. 2005, DOI: 10.1109/MDT.2005.30.

    [23] a . T kachenko, D. C abric, a nd R . W. Brodersen, “ Cognitive R adio E xperiments u sing Reconfigurable BEE2”, in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp. 2041-2045, DOI: 10.1109/ACSSC.2006.355125.

    [24] G. Eichinger, K. Chowdhury, and M. Leeser, “CRUSH: Cognitive radio universal software hardware”, Proc. - 22nd Int. Conf. F. Program. Log. Appl. FPL 2012, pp. 26-32, 2012, DOI:10.1109/FPL.2012.6339237.

    [25] Ettus Research, “USRP Hardware Driver and USRP Manual: Table Of Contents” [internet]. Available: https://files.ettus.com/manual/.

    [26] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to Digital at Sub-Nyquist Rates”, IET Circuits, Devices Syst., vol. 5, n.° 1, p. 8, 2009, DOI: 10.1049/ iet-cds.2010.0147.

    [27] MP Antenna LTD, “Datasheet Super-M Ultra Base antenna.” Elyria, Ohio, p. 2, [Online]. Available: www.mpantenna.com.

    [28] Myriad RF, “Myriad-RF Development Kit.” p. 94, 2013.

    [29] S. Kirolos et al., “Analog-to-Information Conversion via Random Demodulation”, in 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Oct. 2006, pp. 71–74, DOI: 10.1109/DCAS.2006.321036.

    [30] Terasic Incorporated, “ADC-SoC User Manual.” 2017, [Online]. Available: https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=1061&FID=2170285f16d7e05879607fccd2f31574.

    [31] Altera Corporation, “Cyclone V Hard Processor System Technical Reference Manual.” 2015, [Online]. Available: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-v/cv_5v4.pdf.

    [32] Intersil Corporation, “HFA3101 Gilbert Cell UHF Transistor Array Datasheet.” 2004, [Online]. Available: https://www.intersil.com/content/dam/intersil/documents/hfa3/hfa3101.pdf.

    [33] Analog Devices Incorporated, “ADA4807-1/ADA4807-2/ADA4807-4 3.1 nV/√Hz, 1 mA, 180 MHz, Rail-to-Rail Input/Output Amplifiers.” 2006, [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4807-1_4807-2_4807-4.pdf.

    [34] Altera Corporation, “Avalon Interface Specifications.” 2015, [Online]. Available: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf.

    [35] P. Alfke, “Application note: Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators.” 1996, [Online]. Available: https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf.

    [36] Analog Devices Incorporated, “AD9254 14-Bit, 150 MSPS, 1.8 V Analog-to-Digital Converter.” 2015, [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/AD9254.pdf.

    [37] M. Lexa, M. Davies, and J. Thompson, “Sampling Sparse Multitone Signals with a Random Demodulator”, 2010.

    [38] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples”, Appl. Comput. Harmon. Anal., vol. 26, n.° 3, pp. 301–321, May 2009, DOI: 10.1016/j.acha.2008.07.002.

    [39] Stephen Cass, “The 2018 Top Programming Languages - IEEE Spectrum.” https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages (accessed Sep. 13, 2018).

    [40] A. Ronacher, “Welcome | Flask (A Python Microframework).” http://flask.pocoo.org/ (accessed Sep. 13, 2018).

    [41] European Telecommunications Standards Institute, “EUROPEAN STANDARD Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broroadcasting system (DVB-T2).” 2015.

    [42] European Telecommunications Standards Institute, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 10.3.0 Release 10).” 2011.

    [43] Apache Software Foundation, “Jmeter”, 2018. https://jmeter.apache.org/ (accessed Sep. 10, 2018).

  • Author Biographies

    Juan Felipe Medina Lee, Universidad del Quindío

    Ingeniero electrónico (Universidad del Quindío) y magíster en ingeniería con énfasis en electrónica (Universidad del Valle).

    Alexander López-Parrado, Universidad del Quindío

    Ingeniero electrónico (Universidad del Quindío), magíster en ingeniería electrónica (Universidad del Valle) y doctor en ingeniería (Universidad del Valle). Áreas de investigación: procesamiento digital de señales, telecomunicaciones, computación de alto rendimiento.

    Alexander Vera Tasamá, Universidad del Quindío

    Ingeniero electrónico y especialista en radiocomunicaciones (Universidad del Quindío). Doctor en Ingeniería
    electrónica (Universidad del Valle).

    Duvier de Jesús Bohórquez Palacio, Universidad del Quindío

    Ingeniero Electrónico, Universidad del Quindío (2020)

How to Cite
Medina Lee, J. F., López-Parrado, A., Vera Tasamá, A., & Bohórquez Palacio, D. de J. (2019). Testbed for Sub-Nyquist Wideband Spectrum Monitoring. Revista Ingenierías Universidad De Medellín, 19(37), 35-58. https://doi.org/10.22395/rium.v19n37a2


Download data is not yet available.