A Curriculum Design Approach by the Means of a General Morphological Analysis

Main Article Content

Alexander Vera Tasama
Jorge Iván Marín Hurtado
Jaiber Evelio Cardona Aristizábal
Francisco Javier Ibargüen Ocampo

Abstract

The context of conceiving, designing, implementing, and operating real-world systems and products, namely the CDIO initiative, is a framework for engineering education. It considers 12 standards, which are the reference for curriculum design and assessment. A good implementation of the CDIO standards can be considered as a multi-dimensional complex problem. In order to propose strategies for implementing the CDIO initiative in the Electronic Engineering curriculum at Universidad del Quindío, the General Morphological Analysis (GMA) was used. Some relevant dimensions of the curriculum and their values were contrasted in a cross-consistency assessment (CCA), where 8 dimensions were established, and a total of 34,560 combinations were obtained in the problem space. Through the CCA, the number of coherent combinations was significantly reduced. Finally, these combinations were analyzed to propose the corresponding strategies that are the input for the implementation of the CDIO curriculum in the Electronic Engineering program.


How to Cite
Vera Tasama, A., Marín Hurtado, J. I., Cardona Aristizábal, J. E., & Ibargüen Ocampo, F. J. (2019). A Curriculum Design Approach by the Means of a General Morphological Analysis. Revista Ingenierías Universidad De Medellín, 19(37), 59–74. https://doi.org/10.22395/rium.v19n37a3

Article Details

References

[1] K. E. Willcox and L. Huang, 'Mapping the CDIO curriculum with network models,' in Proceedings of the 13th International CDIO Conference, 2017.

[2] A. Álvarez and T. Ritchey, 'Applications of General Morphological Analysis From Engineering Design to Policy Analysis,' Acta Morphol. Gen. AMG, vol. 4, no. 1, 2015.

[3] J. I. Marín et al., 'Conceptual Verification of CDIO Skills in the Electronic Engineering Curriculum at Quindío University,' in Proceedings of the 13th International CDIO Conference, 2017.

[4] Australian Government - Office for Learning & Teaching, 'Curriculum Design Workbench (Tool) | Assuring Learning.' [Online]. Available: http://www.assuringlearning.com/curriculum-design-workbench-tool. [Accessed: 17-Sep-2018].

[5] E. F. Crawley et al., Rethinking Engineering Education, 2014. DOI: https://doi.org/10.1109/FIE.2017.8190506

[6] H. W. J. Rittel and M. M. Webber, 'Dilemmas in a General Theory of Planning,' Policy Sci., no. 4, pp. 155-169, 1973. DOI: https://doi.org/10.1007/BF01405730

[7] T. Ritchey, Wicked problems-social messes: Decision support modelling with morphological analysis, Berlin: Springer, 2011.

[8] A. Álvarez and T. Ritchey, 'Applications of General Morphological Analysis,' Acta Morphol. Gen., vol. 4, no. 1, pp. 1-40, 2015.

[9] 'CDIO Vision | Worldwide CDIO Initiative.' [Online]. Available: http://cdio.org/cdio-vision. [Accessed: 13-Sep-2018].

[10] 'CDIO Standard 2.1 | Worldwide CDIO Initiative.' [Online]. Available: http://www.cdio.org/content/cdio-tandard-21. [Accessed: 15-Sep-2018].

[11] 'CDIO Syllabus 2.0 | Worldwide CDIO Initiative.' [Online]. Available: http://cdio.org/benefits-cdio/cdio-syllabus/cdio-syllabus-topical-form. [Accessed: 13-Sep-2018].

[12] National Instruments, '¿Qué es LabVIEW? - National Instruments,' 2018. [Online]. Available: http://www.ni.com/es-co/shop/labview.html. [Accessed: 15-Sep-2018].

[13] I. Johansen, 'Scenario modelling with morphological analysis,' Technol. Forecast. Soc. Change, vol. 126, pp. 116-125, Jan. 2018. DOI: https://doi.org/10.1016/j.techfore.2017.05.016

[14] J. Biggs and C. Tang, Teaching for Quality Learning at University. 2007. DOI: https://doi.org/10.1097/00005176-200304000-00028

[15] T. Ritchey, 'General morphological analysis as a basic scientific modelling method,' Technol. Forecast. Soc. Change, vol. 126, no. May 2017, pp. 81-91, 2018.DOI: https://doi.org/10.1016/j.techfore.2017.05.027

[16] T. Ritchey, 'Principles of Cross-Consistency Assessment in General Morphological Modelling,' Acta Morphol. Gen., vol. 4, no. 2, pp. 1-20, 2015.

Author Biographies

Alexander Vera Tasama, Universidad del Quindío

Doctor en ingeniería. Profesor asistente, Grupo de Investigación en Procesamiento Digital de Señales y Procesadores (GDSPROC), Programa de Ingeniería Electrónica, Universidad del Quindío.

Jorge Iván Marín Hurtado, Universidad del Quindío

Doctor en ingeniería eléctrica y de la computación. Profesor asistente, director del Grupo de Investigación
en Procesamiento Digital de Señales y Procesadores (GDSPROC), y director del Programa de Ingeniería
Electrónica, Universidad del Quindío.

Jaiber Evelio Cardona Aristizábal, Universidad del Quindío

Doctor en Ingeniería, Profesor Asociado, Grupo de Investigación en Automatización y Máquinas de Aprendizaje
(GAMA), Programa Ingeniería Electrónica, Universidad del Quindío.

Francisco Javier Ibargüen Ocampo, Universidad del Quindío

Magíster en ingeniería. Profesor asistente, Grupo de Investigación en Automatización y Máquinas de Aprendizaje (GAMA), Programa de Ingeniería Electrónica, Universidad del Quindío.

Most read articles by the same author(s)