River Velocity through LSPTV Technique using UAVs

Jorge Andrés Rosero Legarda | Bio
Estudiante
Angela Nathalia Argoti Santacruz | Bio
Ingeniera ambiental
Francisco Ricardo Mafla Chamorro | Bio
Universidad Mariana

Abstract

This paper presented the analysis of the difference between two techniques for the measurement of the velocity of water flows using the non-intrusive large-scale particle tracking velocimetry technique (LS PTV) and various intrusive techniques like digital water velocity meters.

This research analyzes the difference between two techniques for measuring the velocity of water flows, using the non-intrusive large-scale particle tracking velocimetry technique (LSPTV), and intrusive techniques such as electromagnetic windlass and propeller windlass. A fluvial characterization of the river is conducted to classify it in relation to various fluvial parameters. The technique is applied in the stretch of the river, using two types of Unmanned Aerial Vehicles (UAVs): DJI Inspire II and DJI Spark, using two types of tracers, to obtain velocity fields in the study section. Comparing the two techniques it is evident that the tracers that best adapted to the model are the orange peel with the Spark drone with a reliability of 91 %, compared to the tracers of plastic covers with the same vehicle with a reliability of 81 %. The LSPTV technique has higher reliability compared to conventional methods, even more when depth corrections are made; therefore, it would reduce the risks for operators and/or damage to equipment that needs to be introduced to the fluid.

References

  1. M. Bieri, J. Jenzer, S. Kantoush, and J.L. Boillat, “Large Scale Particle Image Velocimetry applications for complex free surface flows in river and dam engineering”, Paper present at 33rd Congress. Int. Assoc. of Hydraulic, pp. 604-611, 2009. Available: https://goo.gl/NUE9Rq.
  2. J. Gutiérrez, “Evaluación de la técnica de LS PIV para estimar la velocidad superficial del agua en obras hidráulicas”, Instituto Mexicano de Tecnología del Agua, pp. 1-54, 2011. Available: https://goo.gl/kTp6Sx.
  3. J.D. Martinez and F.J. Gonzáles, “Velocímetro de partículas basado en imágenes digitales”, Instituto de Investigación en Comunicación Óptica, pp. 1-5, 2006. Available: https://rb.gy/qzpaew.
  4. F. Tauro, R. Piscopia and S. Grimaldi. “PTV-Stream: A simplified particle tracking velocimetry framework for stream surface flow monitoring”, CATENA, vol. 172, 2018. https://doi.org/10.1016/j.catena.2018.09.009
  5. A. Patalano. PTVlab (Particle Tracking Velocimetry - lab). Available: http://goo.gl/PM8KuR
  6. R. Aleixo, S. Soares-Frazão, and Y. Zech. “Velocity-field measurements in a dam-break flow using a PTV Voronoï imaging technique”. Exp. Fluids, vol. 50, pp. 1633–1649, 2011. https://doi.org/10.1007/s00348-010-1021-y.
  7. D. Rosgen, “Fundamentals of Rosgen Stream Classification System”, U.S Environmental Protection Agency, 1996. Available: https://goo.gl/3n3KdH
  8. OTT Hidromet GmbH, OTT MF pro técnica moderna para condiciones difíciles, Available: https://goo.gl/VFgte2
  9. A. Patalano, M. García, N. Guillén, C. García, E. Díaz, A. Rodríguez and A. Ravelo, “Evaluación experimental de la técnica de velocimetría por seguimiento de partículas a gran escala para la determinación de caudales en ríos serranos”, Aqua-LAC, vol. 6 no.1, pp. 17 – 24, 2014. Available: https://goo.gl/SmvgtG.
  10. C. Pagano, F. Tauro, S. Grimaldi, and M. Porfiri, “Development and testing of an unmanned aerial vehicle for large scale particle image velocimetry”, Conference Sponsors: Dynamic Systems and Control Division San Antonio, pp. 1-7, 2014. https://doi.org/10.1115/DSCC2014-58
  11. T. Vaschalde, “Caracterización hidrodinámica del flujo de ingreso a las obras de evacuación de excedentes de la Presa Los Molinos, Jujuy”, Master Thesis. Centro de Estudios y Tecnología del Agua, Universidad Nacional de Córdoba, pp. 1-304, 2013. URL: http://hdl.handle.net/11086/808.
  12. W. Brevis, Y. Niño and G. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry”, 2010. https:/doi.org/10.1007/s00348-010-0907-z.
  13. C. Masafu, R.Williams, X. Shi, Q. Yuan and M. Trigg. “Unpiloted Aerial Vehicle (UAV) image velocimetry for validation of two-dimensional hydraulic model simulations”. Journal of Hydrology. vol. 612, 2022. https://doi.org/10.1016/j.jhydrol.2022.128217.
  14. R. Cheng, J. Gartner, R. Mason, J. Costa, W. Plant, K. Spicer, et al. “Evaluating a RadarBased, Non-Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California”. Open-File Report 2004-1015, 2004. Doi: 10.3133/ofr20041015.
  15. C. Goodwin, “Fluvial Classification: Neanderthal Necessity or Needless Normalcy”, In: Wildland Hydrology, American Water Resources Association, pp. 229-236, 1999. Available: https://goo.gl/7dk9YS.
  16. J.A. Sánchez, A. Olledo, D.Ballarin, D. Mora, R. Montorio, M. Zuñiga, et al., “Aplicación de la clasificación de Rosgen al río Gállego y protocolo para su aplicación a los ríos de la cuenca del Ebro”, Universidad de Zaragoza. pp. 6-37, 2004. Available: https://goo.gl/PfUCE8.
  17. M. Gonzales, D. García, “Caracterización jerárquica de los ríos españoles. Propuesta de tipología de tramos fluviales para su clasificación atendiendo a la directiva marco del agua”, Limnetica vol. 25, pp. 81-98, 2006. Doi: 10.23818/limn.25.47.
  18. R. Alonso, “Características hidráulicas y geomorfológicas de ríos de montaña”, Cimbra, no. 362, pp. 20-23, 2005. URL: http://hdl.handle.net/10459.1/46509.
  19. J. Arellano, “La velocidad y el esfuerzo de corte inverso en dos secuencias consecutivas del tipo pozón-rápido a través del modelo numérico tridimensional Delft 3D-FLOW”, Master Thesis. Universidad Católica de Concepción Chile, pp. 3-4, 2016. URL: http://repositoriodigital.ucsc.cl/handle/25022009/1191
  20. N. Guillén, “Estudios avanzados para el diseño hidrológico e hidráulico de infraestructura hídrica”, Master Thesis. Universidad Nacional de Córdoba, pp. 90-102, 2014. Available: URL: http://hdl.handle.net/11086/1773.
  21. Aleixo, R., Soares-Frazão, S., and Zech, Y. “Velocity-field measurements in a dam-break flow using a PTV Voronoï imaging technique”. Experiments in Fluids, vo. 6, pp. 1633–1649, 2011. https://doi.org/10.1007/s00348-010-1021-y
  22. Lobo, A. P. “Implementación de la técnica experimental de velocimetría por seguimiento de partículas (PTV) para cuantificar el recurso hídrico superficial en cursos fluviales de la provincia de Catamarca”. Master Thesis. Universidad Nacional del Litoral, pp. 240, 2019. Available: URL: http://hdl.handle.net/11185/1195.
  23. H. Tang, “An improved PTV system for large-scale physical river model”. Journal of Hydrodynamicsvol. 6, pp. 669-678. https://doi.org/10.1016/S1001-6058(09)60001-9
  24. Tang, Hw., Chen, C., Chen, H., Huang, J., “Streamflow Properties from Time Series of Surface Velocity and Stage”, Journal of Hydraulic Engineering, Vol. 131 no. 8, pp. 657–664, https://doi.org/10.1016/S1001-6058(09)60001-9.
  25. Johnson, E., and Cowen, E. “Remote Determination of the Velocity Index and Mean”. Water
  26. Resources Research, vol. 53, pp. 7521-7535, 2017. Doi: 10.1002/2017WR020504
How to Cite
Rosero Legarda, J. A., Argoti Santacruz, A. N., & Mafla Chamorro, F. R. (2022). River Velocity through LSPTV Technique using UAVs. Revista Ingenierías Universidad De Medellín, 21(41), 1-17. https://doi.org/10.22395/rium.v21n41a5

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in