Análisis del índice precio-beneficio ajustado cíclicamente en portafolios del mercado accionario brasileño, 2011-2019
Contenido principal del artículo
Resumen
Este artículo evalúa las bondades del indicador precio-beneficio ajustado cíclicamente para la construcción de portafolios de inversión en el mercado accionario brasileño para el periodo 2011-2019. Para cumplir este objetivo se tomó información del valor de las acciones de treinta y tres empresas que cotizan en la bolsa de valores de Brasil y se les aplica el índice para la construcción de portafolios eficientes. El comportamiento de los activos financieros que componen dichos portafolios se comparó con el índice Bovespa, y luego se procedió a calcular el valor del riesgo, con el fin de generar portafolios de inversión con un riesgo equivalente al Bovespa. A pesar de que existen estudios de aplicación de este indicador en diversos mercados, son pocos los que se enfocan en el precio-beneficio ajustado cíclicamente para la construcción de portafolios de inversión y no se evidencia la existencia de análisis de este tipo enfocados en el mercado latinoamericano, de aquí la importancia de este trabajo. Como resultado, se observó que el rendimiento de los portafolios construidos con esta metodología supera al Bovespa en seis de los nueve años analizados, además, entre 2011 y 2019 los portafolios construidos generaron un rendimiento 3,27 veces superior al Bovespa.
Detalles del artículo
Citas
Abuzayed, B., Bouri, E., Fayoumi, N. y Jalkh, N. (2021). Systemic Risk Spillover Across Global and Country Stock Markets During The COVID-19 Pandemic. Economic Analysis and Policy, 71(C), 180-197. https://doi.org/10.1016/j.eap.2021.04.010
Ahmed, D., Soleymani, S., Zaka, M. y Hasan, H. (2021). Managing The Risk Based on Entropic Value-At-Risk Under a Normal-Rayleigh Distribution. Applied Mathematics and Computation, 402. https://doi.org/10.1016/j.amc.2021.126129
Angelini, N., Bormetti, G., Marmi, S. y Nardini, F. (2018). Value Matters: The Long-Run Behavior of Stock Index Returns. Review of Economics and Finance, 12(2), 16-28. http://www.bapress.ca/ref/ref-article/1923-7529-2018-02-16-13.pdf
Anott, R. K. (2018). CAPE Fear: Why CAPE Naysayers Are Wrong. Research affiliates. Banco Mundial. (2021). Crecimiento del PIB en (% anual) - Brazil. https://datos.bancomundial.org/indicator/NY.GDP.MKTP.KD.ZG?locations=BR
Bolek, M., Pietraszewki, P. y Wolski, R. (2021). Companies’ Growth vs. Growth Opportunity: Evidence from the Regular and Alternative Stock Markets in Poland. Acta Oeconomica, 71(2), 279-307. https://doi.org/10.1556/032.2021.00014
Bunn, O., Staal, A., Zhuang, J. Lazanas, A., Ural, C. y Shiller, R. (2014). Es-Cape-Ing from Overvalued Sectors: Sector Selection Based on The Cyclically Adjusted Price-Earnings (CAPE) Ratio. Journal of Portfolio Management, 41(1), 16-33. https://doi.org/10.3905/jpm.2014.41.1.016
Clare, A., Seaton, J., Smith, P. y Thomas, S. (2017). Reducing Sequence Risk Using Trend Following and the CAPE Ratio. Financial Analysts Journal, 73(4), 1-13. https://doi.org/10.2469/faj.v73.n4.5
Costa, C. T., Vieira da Silva, W., Brito de Almeida, L. y Pereira da Veiga, C. (2017). Empirical Evidence of the Existence of Speculative Bubbles in the Prices of Stocks Traded on the São
Paulo Stock Exchange. Contaduría y Administración, 62(4), 1317-1334. https://doi.org/10.1016/j.cya.2017.02.007
Cunha, F. M., Meira, E., Orsato, R., Cabus, M. y Lucena, A. (2021). Do Low-Carbon Investments in Emerging Economies Pay Off? Evidence From The Brazilian Stock Market. International Review of Financial Analysis, 74. https://doi.org/10.1016/j.irfa.2021.101700
Dimitrov, V. y Jain, P. (2018). Shiller’s CAPE: Market Efficiency and Risk. Financial Review, 53(4), 741-771. https://doi.org/10.1111/fire.12167.
Feldman, T., Jung, A. y Klein, J. (2015). Buy and Hold Versus Timing Strategies: The Winner Is... The Journal of Portfolio Management, 42(1), 110-118. https://doi.org/10.3905/jpm.2015.42.1.110
Guang L., Yu, C. P., Shiu, N. y Shin, T. (2022). The Efficient Market Hypothesis and the Fractal Market Hypothesis: Interfluves, Fusions, and Evolutions. Sage Open, 12(1), 1-8. https://doi.org/10.1177/21582440221082137
Kouaissah, N. (2021). Using Multivariate Stochastic Dominance to Enhance Portfolio Selection and Warn Of Financial Crises. The Quarterly Review of Economics and Finance, 80, 480-493. https://doi.org/10.1016/j.qref.2021.03.015
Lu, Y., Li, M., Tang, X. y Wang, H. (2021). A Cluster Representative Selection Method for Stock Portfolio Based on Efficient Frontier. Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design, CSCWD. https://doi.org/10.1109/CSCWD49262.2021.9437767
Mihai, S. (2015). Etfs Performance Europe - a Good Start Or Not? Procedia Economics and Finance, 30, 955-966. https://doi.org/10.1016/S2212-5671(15)01346-5
Mustika, M., Mulyawati, T., Apriyanto, D. K., Sausan, A. y Rofikah. (2021). Application of Pascoletti- Serafini scalarization modification method to solve multi-objective optimization problems for stock portfolio. Journal of Physics: Conference Series, 1821(1). https://doi.org/10.1088/17426596/1821/1/012058
Philips, T. y Kodor, A. (2020). Ultra-Simple Shiller’s CAPE: How One Year’s Data Can Predict Equity Market Returns Better Than Ten. Journal of Portfolio Management, 46(4), 140-155. https://doi.org/10.3905/jpm.2020.1.124
Quiroga, E. (2017). Eficiencia en los mercados financieros y predicción de precios de los activos. Ciencias Administrativas, (10), 1-11. https://www.redalyc.org/journal/5116/511653854005/511653854005.pdf
Sehgal, R. M. y Mehra, A. (2021). Robust Reward-Risk Ratio Portfolio Optimization. International Transactions in Operational Research, 28(4). https://doi.org/10.1111/itor.12652
Sharma, C. S. y Sahni, N. (2021). A Mutual Information Based R-Vine Copula Strategy to Estimate Var in High Frequency Stock Market Data. PLoS ONE, 16(6). https://doi.org/10.1371/journal.pone.0253307
Shiller, R. (2000). Irrational exuberance. Princeton University Press. http://www.library.fa.ru/files/Shiller2.pdf
Siegel, J. (2016). The Shiller CAPE Ratio: A New Look. Financial Analysts Journal, 72(3), 41-50. https://doi.org/10.2469/faj.v72.n3.1
Smith, S. (2015). Ossiam launches Shiller Barclays CAPE Sector Value Europe ETF. ETF Strategy. https://www.etfstrategy.com/ossiam-launches-shiller-barclays-cape-sector-value-europeetf-41259/
Song, S., Tian, S. y Li, H. (2021). An Intraday-Return-Based Value-at-Risk Model Driven by Dynamic Conditional Score with Censored Generalized Pareto Distribution. Journal of Asian Economics, 74. https://doi.org/10.1016/j.asieco.2021.101314
Straehl, P. y Bernstein, W. (2017). The Long-Run Drivers of Stock Returns: Total Payouts and the Real Economy. Financial Analysts Journal, 73(3), 1-21. https://doi.org/10.2469/faj.v74.n1.6
Sulistianingsih, E., Rosadi, D. y Abdurakhman. (2021). Risk Analysis of Five Stocks Indexed by LQ45 Using Credible Value at Risk and Credible Expected Tail Loss. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042023
Tan, R. (2021). Changes in The Portfolio Management And Construction Under The Pandemic Era.E3S Web of Conferences, 275. https://doi.org/10.1051/e3sconf/202127501005
Tuarob, S., Wettayakorn, P., Phetchai, P., Traivijitkhun, S., Lim., S., Noraset, T. y Thaipisutikul,
T. (2021). DAVIS: A Unified Solution for Data Collection, Analyzation, and Visualization in Real-Time Stock Market Prediction. Financial Innovation, 7(1). https://doi.org/10.1186/s40854-021-00269-7
Waser, O. (2021). Modelling the shiller CAPE ratio, mean reversion, and return forecasts. Journal of Portfolio Management, 47(3). https://doi.org/10.3905/JPM.2021.1.210
Xu, Q., Li, M. y Jiang, C. (2021). Network-Augmented Time-Varying Parametric Portfolio Selection: Evidence from The Chinese Stock Market. North American Journal of Economics and Finance, 58. https://doi.org/10.1016/j.najef.2021.101503
Zhao, H., Gan Chen, Z. Hiu Zhan, Z., Kwong, S. y Zhang, J. (2021). Multiple Populations Co-Evolutionary Particle Swarm Optimization for Multi-Objective Cardinality Constrained Portfolio Optimization Problem. Neurocomputing, 430, 58-70. https://doi.org/10.1016/jneucom.2020.12.022