Valoración de riesgo mediante modelos GARCH y simulación Montecarlo: evidencia del mercado accionario colombiano
Contenido principal del artículo
Resumen
Este documento evalúa el comportamiento de varios modelos de volatilidad en estimaciones de un día del valor en riesgo (VaR) de veinticuatro series de retornos de acciones en Colombia con diferentes distribuciones. Al considerar que todas las series de retornos presentan clúster de volatilidad y memoria de largo plazo, se utilizan modelos tipo GARCH que incluyen diferentes distribuciones: normal, T-Student y GED. Los hallazgos corroboran la dificultad de elegir un único modelo para el cálculo del VaR, pero validan el uso de modelos paramétricos con distribución normal y simulación Montecarlo en mercados financieros emergentes.
Detalles del artículo
Citas
Abounoori, Esmaiel, Elmi, Zahra, y Nademi, Younes. (2016). Forecasting Tehran stock Exchange volatility; Markow switching GARCH approach, En: Physica A, N°. 445, p. 264-282. Doi:10.1016/j.physa.2015.10.024
Aloui, Chaker y Mabrouk, Samir. (2010). Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models. En: Energy Policy, N°. 38, p. 2326-2339.Doi:10.1016/j.enpol.2009.12.020
Andersen, Torben, Benzoni, Luca y Lund, Jesper. (2002). An empirical investigation of continuous- -time equity return models. En: Journal of Finance, Vol. 57, N°. 3, p. 1239-1284. Doi:10.1111/1540-6261.00460
Angelidis, Timotheos, Benos, Alexandros y Degiannakis, Stavros. (2004). The use of GARCH models in VaR estimation. En: Statistical Methodology, N°. 1, p. 105-128.
Assaf, Ata. (2015). Value-at-Risk analysis in the MENA equity markets: Fat tails and conditional asymmetries in return distributions. En: Journal of Multinational Financial Management, N°. 29, p. 30-45. Doi: 10.1016/j.mulfin.2014.11.002
Bayer, Sebastian. (2018). Combining Value-at-Risk forecasts using penalized quantile Regressions, En: Econometrics and Statistics, N°. 8, p. 56-77.
Bentes, Sónia. (2014). Measuring persistence in stock market volatility using the FIGARCH approach. En: Physica A, N°. 408, p. 190-197. Doi: 10.1016/j.physa.2014.04.032
Bollerslev, Tim. (1986). Generalized autoregressive conditional heteroskedasticity. En: Journal of Econometrics, N°. 31, p. 307-327. Doi: 10.1016/0304-4076(86)90063-1
Bollerslev, T. (1987). A conditionally heteroscedastic time series model for speculative prices and rates of return. En: Review of Economics and Statistics, N°. 69, p. 542-547.
Castaño, Elkin,. Gómez, Karoll y Gallón, Santiago (2008). Pronóstico y estructuras de volatilidad multiperíodo de la tasa de cambio del peso colombiano. En: Cuadernos de Economía, Vol. XXVII, No. 48, p. 241-266
Cheong, Chin Wen. (2008). Heavy-tailed value-at-risk analysis for Malaysian stock exchange. En: Physica A, N°. 387, p. 4285-4298. Doi: 10.1016/j.physa.2008.01.075
Cheong, Chin Wen. (2009). Modeling and forecasting crude oil markets using ARCH-type models. En: Energy Policy, N°. 37, p. 2346-2355. Doi: 10.1016/j.enpol.2009.02.026
Chiu, Yen-Chen y Chuang, I-Yuan. (2016). The performance of the switching forecast model of value-at-risk in the Asian stock markets. En: Finance Research Letters, N°. 18, p. 43-51. Doi:10.1016/j.frl.2016.03.019
Comité de Supervisión Bancaria de Basilea (BCBS) (2019). Minimum capital requirements for market risk. Suiza: BCBS.
Degiannakis, Stavros y Potamia, Artemis. (2017). Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data. En: International Review of Financial Analysis, N°: 49, p. 176-190. Doi: 10.1016/j.irfa.2016.10.008
Delgado, Luis David y Durango, María Patricia (2018). Estructuración de un portafolio de inversiones con acciones colombianas, En: Semestre Económico, Vol. 21, N°. 46, p. 167-183. Doi: 10.22395/seec.v21n46a7.
Diamandis, Panayiotis, Drakos, Anastassios, Kouretas, Georgios y Zarangas, Leonidas. (2011). Value-at-risk for long and short trading positions: Evidence from developed and emerging equity markets. En: International Review of Financial Analysis, N°. 20, p. 165-176. Doi: 10.1016/j.irfa.2011.02.009
Dimitrakopoulos, Dimitris, Kavussanos, Manolis y Spyrou, Spyros. (2010). Value at risk models for volatile emerging markets equity portfolios. En: The Quarterly Review of Economics and Finance, N°. 50, p. 515-526. Doi: 10.1016/j.qref.2010.06.006
Dowd, Kevin y Blake, David. (2006). After Var: the theory, estimation and insurance applications of quantile-based risk measures. En: The Journal of Risk and Insurance, Vol. 73, N°. 2, p. 193-229. Doi: 10.1111/j.1539-6975.2006.00171.x
Engle, Robert. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. En: Econométrica, Vol. 50, N°. 4, p. 987-1007.
Ewing, Bradley y Malik, Farroq. (2017). Modelling asymmetric volatility in oil prices under structural breaks. En: Energy Economics, N°. 63, p. 227-233. Doi: 10.1016/j.eneco.2017.03.001
Fan, Ying, Zhang, Yue-Jung, Tsai, Hsien-Tang, y Wei, Yi-Ming. (2008). Estimating ‘Value at Risk’ of crude oil price and its spillover effect using the GED-GARCH approach. En: Energy Economics, N°. 30, p. 3156-3171 Doi: 10.1016/j.eneco.2008.04.002
Gallant, Ronald, Hsieh, David y Tauchen, George. (1997). Estimation of stochastic volatility models with diagnostics. En: Journal of Econometrics, N°. 81, p. 159-192.
Giot, Pierre y Laurent, Sébastien. (2004). Modelling daily Value-at-Risk using realized volatility and ARCH type models. En: Journal of Empirical Finance, N°. 11, p. 379-398. Doi: 10.1016/j.jempfin.2003.04.003
Gonzaléz-Rivera, Gloria, Lee, Tae-Hwy, y Mishra, Santosh. (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. En: International Journal of Forecasting, N°. 20, p.629--645. Doi: 10.1016/j.ijforecast.2003.10.003
Hartz, Christoph, Mittnik, Stefan, y Paolella, Marc. (2006). Accurate value-at-risk forecasting based on the normal-GARCH model, En: Computational Statistics and Data Analysis, N°. 51, p. 2295-2312.
Hull, John, White, Alan. (1998). Incorporating volatility updating into the historical simulation method for VaR. En: The Journal of Risk, N°. 1, p. 5-19.
Jorion, P. (2000). Valor en Riesgo: El nuevo paradigma para el control de riesgos con derivados. México, D.F.: Limusa.
Kupiec, Paul. (1995). Techniques for verifying the accuracy of risk measurement models. En: The Journal of Derivatives, Vol. 3, N°. 2, p. 73-84. Doi: 10.3905/jod.1995.407942.
Kuri, K., Ojeda, C., y Ovalle, D. (2015). Modelación de la serie de retornos diarios de la acción de ecopetrol en el periodo: 27/noviembre/2007-25/noviembre/2013. En: Heurística, N°. 17, p. 51-57.
Laporta, Alessandro, Merlo, Luca y Petrella, Lea. (2018). Selection of Value at Risk Models for Energy Commodities, En: Energy Economics, N°. 74, p.628-643. Doi: 10.1016/j.eneco.2018.07.009
Mabrouk, Samir. (2016). Forecasting daily conditional volatility and h-step-ahead short and long Value-at-Risk accuracy: Evidence from financial data. En:The Journal of Finance and Data Science, N°. 2, p. 136-151. Doi: 10.1016/j.jfds.2016.06.001
Mabrouk, Samir y Saadi, Samir. (2012). Parametric Value-at-Risk analysis: Evidence from stock indices. En: The Quarterly Review of Economics and Finance, N°. 52, p. 305-321. Doi: 10.1016/j.qref.2012.04.006
Markovitz, Harry. (1952). Portfolio selection. En: The Journal of Finance, Vol. 7, N°. 1, p. 77-91.
Mendoza, Alfonso y Galvanovskis, Evalds (2014). La cópula GED bivariada. Una aplicación en entornos de crisis. En: El Trimestre Económico, Vol. 81, No. 323, p.721-746.
Nelson, Daniel. (1991). Conditional heteroscedasticity in asset returns: a new approach, En: Econometrica, N°. 59, p. 347-370.
Ospina D´Aleman, Federico y Giraldo Sánchez, David. (2009). Aplicación de los modelos GARCH a la estimacion del VaR de acciones colombianas. En: Soluciones de Postgrado EIA, N° 3. p. 11-24.
Pérez, Fredy y Fernández, Horacio. (2006). Análisis de la volatilidad del índice general de la bolsa de valores de Colombia utilizando modelos ARCH, En: Revista Ingenierías Universidad de Medellín, Vol. 5, N°. 8, p. 13-33.
Pino, Anderson, Uribe, Jorge Mario, y Jiménez, Diana. (2017). Relevancia de los inversionistas institucionales en el mercado accionario colombiano. Semestre Económico, Vol. 20, n°. 44, p. 45-65. Doi: 10.22395/seec.v20n44a3.
Reboredo, Juan, Rivera-Castro, Miguel y Ugolini, Andrea. (2016). Downside and upside risk spillovers between exchange rates and stock prices. En: Journal of Banking & Finance, N°. 62, p.76-96.
Rivera, David. (2009). Modelación del efecto del día de la semana para los índices accionarios de Colombia mediante un modelo STAR GARCH. En: Revista de Economía del Rosario, Vol. 12 N°. 1, p. 1-24.
Sadegui, Mehdi y Shavvalpour, Saeed. (2006). Energy risk management and value at risk modeling, En: Energy Policy, N°. 34, p. 3367-3373.
Sadorsky, Perry. (2014). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. En: Energy Economics, N°. 43, p. 72-81. Doi:10.1016/j.eneco.2014.02.014
Schaeffer, Roberto, Borba, Bruno, Rathmann, Régis, Szklo, Alexandre y Castelo-Branco, David. (2012). Dow Jones sustainability index transmission to oil stock market returns: A GARCH approach, En: Energy, N°. 45, p.933-943.
Slim, Skander, Koubaa, Yosra y BenSaida, Ahmed. (2017). Value-at-Risk under Lévy GARCH models: Evidence from global stock markets. En: Journal of International Financial Markets, Institutions & Money, N°. 46, p. 30-53. Doi: 10.1016/j.intfin.2016.08.008
So, Mike y Yu, Philip. (2006). Empirical analysis of GARCH models in value at risk estimation. International. En: Financial Markets, Institutions & Money, N°. 16, p. 180-197.
Su, Ender y Knowles, Thomas. (2006). Asian Pacific stock market volatility modeling and value at risk analysis. En: Emerging Markets Finance and Trade, N°. 42, p. 18-62.
Su, Jung Bin. (2015). Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market. En: Economic Modelling, N°. 46, p. 204-224. Doi: 10.1016/j.econmod.2014.12.022
Su, Jung-Bin y Hung, Jui-Cheng. (2011). Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation. En: Economic Modelling, N°. 28, p. 1117-1130.
Su, Jung-Bin, Lee, Ming-Chih, y Chiu, Chien-Liang (2014). Why does skewness and the fat-tail effect influence value-at-risk estimates? Evidence from alternative capital markets. En: International Review of Economics and Finance, N°.31, 59-85. Doi: 10.1016/j.iref.2013.12.001
Tang, Ta Lun y Shieh, Shwu-Jane. (2006). Long memory in stock index futures markets: A value--at-risk approach. En: Physica A, N°: 366, p. 437-448. Doi: 10.1016/j.physa.2005.10.017
Uribe, Jorge Mario. (2007). Caracterización del mercado accionario colombiano, 2001-2006: un análisis comparativo. En: Borradores de Economía, N°. 456, p. 1-35.
Wong, Zhen Yao, Chin, Wen Cheon y Tan, Siow Hooi. (2016). Daily value-at-risk modeling and forecast evaluation: The realized volatility approach. En: The Journal of Finance and Data Science, Vol. 2, N°. 3, p.171-187.
Yang, Yung-Lieh y Chang, Chia-Lin. (2008). A double-threshold GARCH model of stock market and currency shocks on stock returns, En: Mathematics and Computers in Simulation, N°. 79, p. 458-474.
Youssef, Manel, Belkacem, Lotfi y Mokni, Khaled. (2015). Value-at-Risk estimation of energy commodities: A long-memory GARCH-EVT approach. En: Energy Economics, N°. p. 51, 99-110. Doi: 10.1016/j.eneco.2015.06.010
Zakoian, Jean Michel. (1994). Threshold heteroskedastic models, En: Journal of Economic Dynamics and Control, Vol. 18, N°. 5, p. 931-955. Doi: 10.1016/0165-1889(94)90039-6