Valoración de riesgo mediante modelos GARCH y simulación Montecarlo: evidencia del mercado accionario colombiano

Palabras clave: Valor en riesgo; modelos GARCH; simulación; Colombia

Resumen

Este documento evalúa el comportamiento de varios modelos de volatilidad en estimaciones de un día del valor en riesgo (VaR) de veinticuatro series de retornos de acciones en Colombia con diferentes distribuciones. Al considerar que todas las series de retornos presentan clúster de volatilidad y memoria de largo plazo, se utilizan modelos tipo GARCH que incluyen diferentes distribuciones: normal, T-Student y GED. Los hallazgos corroboran la dificultad de elegir un único modelo para el cálculo del VaR, pero validan el uso de modelos paramétricos con distribución normal y simulación Montecarlo en mercados financieros emergentes.

  • Referencias

    Abounoori, Esmaiel, Elmi, Zahra, y Nademi, Younes. (2016). Forecasting Tehran stock Exchange volatility; Markow switching GARCH approach, En: Physica A, N°. 445, p. 264-282. Doi:10.1016/j.physa.2015.10.024

    Aloui, Chaker y Mabrouk, Samir. (2010). Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models. En: Energy Policy, N°. 38, p. 2326–2339.Doi:10.1016/j.enpol.2009.12.020

    Andersen, Torben, Benzoni, Luca y Lund, Jesper. (2002). An empirical investigation of continuous- -time equity return models. En: Journal of Finance, Vol. 57, N°. 3, p. 1239-1284. Doi:10.1111/1540-6261.00460

    Angelidis, Timotheos, Benos, Alexandros y Degiannakis, Stavros. (2004). The use of GARCH models in VaR estimation. En: Statistical Methodology, N°. 1, p. 105-128.

    Assaf, Ata. (2015). Value-at-Risk analysis in the MENA equity markets: Fat tails and conditional asymmetries in return distributions. En: Journal of Multinational Financial Management, N°. 29, p. 30-45. Doi: 10.1016/j.mulfin.2014.11.002

    Bayer, Sebastian. (2018). Combining Value-at-Risk forecasts using penalized quantile Regressions, En: Econometrics and Statistics, N°. 8, p. 56-77.

    Bentes, Sónia. (2014). Measuring persistence in stock market volatility using the FIGARCH approach. En: Physica A, N°. 408, p. 190-197. Doi: 10.1016/j.physa.2014.04.032

    Bollerslev, Tim. (1986). Generalized autoregressive conditional heteroskedasticity. En: Journal of Econometrics, N°. 31, p. 307-327. Doi: 10.1016/0304-4076(86)90063-1

    Bollerslev, T. (1987). A conditionally heteroscedastic time series model for speculative prices and rates of return. En: Review of Economics and Statistics, N°. 69, p. 542-547.

    Castaño, Elkin,. Gómez, Karoll y Gallón, Santiago (2008). Pronóstico y estructuras de volatilidad multiperíodo de la tasa de cambio del peso colombiano. En: Cuadernos de Economía, Vol. XXVII, No. 48, p. 241-266

    Cheong, Chin Wen. (2008). Heavy-tailed value-at-risk analysis for Malaysian stock exchange. En: Physica A, N°. 387, p. 4285-4298. Doi: 10.1016/j.physa.2008.01.075

    Cheong, Chin Wen. (2009). Modeling and forecasting crude oil markets using ARCH-type models. En: Energy Policy, N°. 37, p. 2346-2355. Doi: 10.1016/j.enpol.2009.02.026

    Chiu, Yen-Chen y Chuang, I-Yuan. (2016). The performance of the switching forecast model of value-at-risk in the Asian stock markets. En: Finance Research Letters, N°. 18, p. 43-51. Doi:10.1016/j.frl.2016.03.019

    Comité de Supervisión Bancaria de Basilea (BCBS) (2019). Minimum capital requirements for market risk. Suiza: BCBS.

    Degiannakis, Stavros y Potamia, Artemis. (2017). Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data. En: International Review of Financial Analysis, N°: 49, p. 176-190. Doi: 10.1016/j.irfa.2016.10.008

    Delgado, Luis David y Durango, María Patricia (2018). Estructuración de un portafolio de inversiones con acciones colombianas, En: Semestre Económico, Vol. 21, N°. 46, p. 167-183. Doi: 10.22395/seec.v21n46a7.

    Diamandis, Panayiotis, Drakos, Anastassios, Kouretas, Georgios y Zarangas, Leonidas. (2011). Value-at-risk for long and short trading positions: Evidence from developed and emerging equity markets. En: International Review of Financial Analysis, N°. 20, p. 165-176. Doi: 10.1016/j.irfa.2011.02.009

    Dimitrakopoulos, Dimitris, Kavussanos, Manolis y Spyrou, Spyros. (2010). Value at risk models for volatile emerging markets equity portfolios. En: The Quarterly Review of Economics and Finance, N°. 50, p. 515-526. Doi: 10.1016/j.qref.2010.06.006

    Dowd, Kevin y Blake, David. (2006). After Var: the theory, estimation and insurance applications of quantile-based risk measures. En: The Journal of Risk and Insurance, Vol. 73, N°. 2, p. 193-229. Doi: 10.1111/j.1539-6975.2006.00171.x

    Engle, Robert. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. En: Econométrica, Vol. 50, N°. 4, p. 987-1007.

    Ewing, Bradley y Malik, Farroq. (2017). Modelling asymmetric volatility in oil prices under structural breaks. En: Energy Economics, N°. 63, p. 227-233. Doi: 10.1016/j.eneco.2017.03.001

    Fan, Ying, Zhang, Yue-Jung, Tsai, Hsien-Tang, y Wei, Yi-Ming. (2008). Estimating ‘Value at Risk’ of crude oil price and its spillover effect using the GED-GARCH approach. En: Energy Economics, N°. 30, p. 3156-3171 Doi: 10.1016/j.eneco.2008.04.002

    Gallant, Ronald, Hsieh, David y Tauchen, George. (1997). Estimation of stochastic volatility models with diagnostics. En: Journal of Econometrics, N°. 81, p. 159-192.

    Giot, Pierre y Laurent, Sébastien. (2004). Modelling daily Value-at-Risk using realized volatility and ARCH type models. En: Journal of Empirical Finance, N°. 11, p. 379–398. Doi: 10.1016/j.jempfin.2003.04.003

    Gonzaléz-Rivera, Gloria, Lee, Tae-Hwy, y Mishra, Santosh. (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. En: International Journal of Forecasting, N°. 20, p.629–-645. Doi: 10.1016/j.ijforecast.2003.10.003

    Hartz, Christoph, Mittnik, Stefan, y Paolella, Marc. (2006). Accurate value-at-risk forecasting based on the normal-GARCH model, En: Computational Statistics and Data Analysis, N°. 51, p. 2295-2312.

    Hull, John, White, Alan. (1998). Incorporating volatility updating into the historical simulation method for VaR. En: The Journal of Risk, N°. 1, p. 5-19.

    Jorion, P. (2000). Valor en Riesgo: El nuevo paradigma para el control de riesgos con derivados. México, D.F.: Limusa.

    Kupiec, Paul. (1995). Techniques for verifying the accuracy of risk measurement models. En: The Journal of Derivatives, Vol. 3, N°. 2, p. 73-84. Doi: 10.3905/jod.1995.407942.

    Kuri, K., Ojeda, C., y Ovalle, D. (2015). Modelación de la serie de retornos diarios de la acción de ecopetrol en el periodo: 27/noviembre/2007-25/noviembre/2013. En: Heurística, N°. 17, p. 51-57.

    Laporta, Alessandro, Merlo, Luca y Petrella, Lea. (2018). Selection of Value at Risk Models for Energy Commodities, En: Energy Economics, N°. 74, p.628–643. Doi: 10.1016/j.eneco.2018.07.009

    Mabrouk, Samir. (2016). Forecasting daily conditional volatility and h-step-ahead short and long Value-at-Risk accuracy: Evidence from financial data. En:The Journal of Finance and Data Science, N°. 2, p. 136-151. Doi: 10.1016/j.jfds.2016.06.001

    Mabrouk, Samir y Saadi, Samir. (2012). Parametric Value-at-Risk analysis: Evidence from stock indices. En: The Quarterly Review of Economics and Finance, N°. 52, p. 305-321. Doi: 10.1016/j.qref.2012.04.006

    Markovitz, Harry. (1952). Portfolio selection. En: The Journal of Finance, Vol. 7, N°. 1, p. 77-91.

    Mendoza, Alfonso y Galvanovskis, Evalds (2014). La cópula GED bivariada. Una aplicación en entornos de crisis. En: El Trimestre Económico, Vol. 81, No. 323, p.721-746.

    Nelson, Daniel. (1991). Conditional heteroscedasticity in asset returns: a new approach, En: Econometrica, N°. 59, p. 347-370.

    Ospina D´Aleman, Federico y Giraldo Sánchez, David. (2009). Aplicación de los modelos GARCH a la estimacion del VaR de acciones colombianas. En: Soluciones de Postgrado EIA, N° 3. p. 11-24.

    Pérez, Fredy y Fernández, Horacio. (2006). Análisis de la volatilidad del índice general de la bolsa de valores de Colombia utilizando modelos ARCH, En: Revista Ingenierías Universidad de Medellín, Vol. 5, N°. 8, p. 13-33.

    Pino, Anderson, Uribe, Jorge Mario, y Jiménez, Diana. (2017). Relevancia de los inversionistas institucionales en el mercado accionario colombiano. Semestre Económico, Vol. 20, n°. 44, p. 45-65. Doi: 10.22395/seec.v20n44a3.

    Reboredo, Juan, Rivera-Castro, Miguel y Ugolini, Andrea. (2016). Downside and upside risk spillovers between exchange rates and stock prices. En: Journal of Banking & Finance, N°. 62, p.76-96.

    Rivera, David. (2009). Modelación del efecto del día de la semana para los índices accionarios de Colombia mediante un modelo STAR GARCH. En: Revista de Economía del Rosario, Vol. 12 N°. 1, p. 1-24.

    Sadegui, Mehdi y Shavvalpour, Saeed. (2006). Energy risk management and value at risk modeling, En: Energy Policy, N°. 34, p. 3367-3373.

    Sadorsky, Perry. (2014). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. En: Energy Economics, N°. 43, p. 72-81. Doi:10.1016/j.eneco.2014.02.014

    Schaeffer, Roberto, Borba, Bruno, Rathmann, Régis, Szklo, Alexandre y Castelo-Branco, David. (2012). Dow Jones sustainability index transmission to oil stock market returns: A GARCH approach, En: Energy, N°. 45, p.933-943.

    Slim, Skander, Koubaa, Yosra y BenSaida, Ahmed. (2017). Value-at-Risk under Lévy GARCH models: Evidence from global stock markets. En: Journal of International Financial Markets, Institutions & Money, N°. 46, p. 30-53. Doi: 10.1016/j.intfin.2016.08.008

    So, Mike y Yu, Philip. (2006). Empirical analysis of GARCH models in value at risk estimation. International. En: Financial Markets, Institutions & Money, N°. 16, p. 180-197.

    Su, Ender y Knowles, Thomas. (2006). Asian Pacific stock market volatility modeling and value at risk analysis. En: Emerging Markets Finance and Trade, N°. 42, p. 18-62.

    Su, Jung Bin. (2015). Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market. En: Economic Modelling, N°. 46, p. 204-224. Doi: 10.1016/j.econmod.2014.12.022

    Su, Jung-Bin y Hung, Jui-Cheng. (2011). Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation. En: Economic Modelling, N°. 28, p. 1117-1130.

    Su, Jung-Bin, Lee, Ming-Chih, y Chiu, Chien-Liang (2014). Why does skewness and the fat-tail effect influence value-at-risk estimates? Evidence from alternative capital markets. En: International Review of Economics and Finance, N°.31, 59–85. Doi: 10.1016/j.iref.2013.12.001

    Tang, Ta Lun y Shieh, Shwu-Jane. (2006). Long memory in stock index futures markets: A value--at-risk approach. En: Physica A, N°: 366, p. 437-448. Doi: 10.1016/j.physa.2005.10.017

    Uribe, Jorge Mario. (2007). Caracterización del mercado accionario colombiano, 2001-2006: un análisis comparativo. En: Borradores de Economía, N°. 456, p. 1-35.

    Wong, Zhen Yao, Chin, Wen Cheon y Tan, Siow Hooi. (2016). Daily value-at-risk modeling and forecast evaluation: The realized volatility approach. En: The Journal of Finance and Data Science, Vol. 2, N°. 3, p.171-187.

    Yang, Yung-Lieh y Chang, Chia-Lin. (2008). A double-threshold GARCH model of stock market and currency shocks on stock returns, En: Mathematics and Computers in Simulation, N°. 79, p. 458-474.

    Youssef, Manel, Belkacem, Lotfi y Mokni, Khaled. (2015). Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach. En: Energy Economics, N°. p. 51, 99-110. Doi: 10.1016/j.eneco.2015.06.010

    Zakoian, Jean Michel. (1994). Threshold heteroskedastic models, En: Journal of Economic Dynamics and Control, Vol. 18, N°. 5, p. 931-955. Doi: 10.1016/0165-1889(94)90039-6

  • Biografía del autor/a

    Maria Ines Barbosa Camargo, Universidad de La Salle
    Economista y magíster en Ciencias Económicas, Universidad Nacional de Colombia, Bogotá, Colombia. Doctora en Análisis Económico Aplicado e Historia Económica, Universidad de Sevilla, Sevilla, España. Docente investigadora, Universidad de la Salle, Bogotá, Colombia. Integrante del Grupo de Investigación en Estudios Sociales, Financieros e Internacionales (ESFI), Bogotá, Colombia. Correo electrónico: mibarbosa@unisalle.edu.co. Orcid: https://orcid.org/0000-0002-7705-7983
    Alejandra Salazar Sarmiento, Universidad de La Salle
    Profesional en Finanzas y Comercio Internacional, Universidad de la Salle, Bogotá, Colombia. Correo electrónico: salejandra64@unisalle.edu.co. Orcid: https://orcid.org/0000-0001-8445-5202
    Kelly Jhohana Peñaloza Gómez, Universidad de La Salle
    Profesional en Finanzas y Comercio Internacional, Universidad de la Salle, Bogotá, Colombia. Correo electrónico: kpenaloza01@unisalle.edu.co. Orcid: http://orcid.org/0000-0001-6835-8920
Publicado
2019-10-01
Cómo citar
Barbosa Camargo, M. I., Salazar Sarmiento, A., & Peñaloza Gómez, K. J. (2019). Valoración de riesgo mediante modelos GARCH y simulación Montecarlo: evidencia del mercado accionario colombiano. Semestre Económico, 22(53), 53-75. https://doi.org/10.22395/seec.v22n53a3

Descargas

La descarga de datos todavía no está disponible.
Sección
Artículos de investigación