Determinantes de la eficiencia energética: evidencia del grupo Brics (1990-2018)

Digna Ortega | Biografía
Universidad Católica Andrés Bello
José Contreras | Biografía
niversidad Metropolitana de Caracas

Resumen

Este artículo tiene como objetivo presentar evidencias de las estimaciones del nivel de eficiencia energética y sus determinantes socioeconómicos de los países Brasil, Rusia, India, China y Sudáfrica en el periodo 1990-2018. Se estimó la función de distancia insumo para obtener los niveles de eficiencia energética bajo el enfoque del análisis de frontera estocástica con panel de datos, a través de diferentes especificaciones econométricas. Los resultados sugieren que el modelo propuesto por Kumbhakar et al. (2012) es el más adecuado debido a que permite la estimación de la eficiencia transitoria y persistente, así como también, la heterogeneidad no observada y del término de error idiosincrático. Se encontró que un incremento del precio agregado de la energía y valor agregado industrial afectan negativamente a la variabilidad de la ineficiencia transitoria. Además, China e India presentaron los mayores ahorros potenciales en el consumo de energía y en las emisiones de CO2 asociadas en el largo plazo, mientras que en el corto plazo China y Rusia tienen el mayor ahorro potencial; siendo China el país que presenta uno de los menores promedios de eficiencia persistente y transitoria entre la muestra de países.

Referencias

  1. Adebisi, I. (2017). Essays on Energy Efficiency and Fuel Subsidy Reforms [tesis de doctorado, Universidad de Manchester]. https://www.research.manchester.ac.uk/portal/files/84031478/FULL _ TEXT.PDF.
  2. Adetutu, M., Glass, A. y Weyman-Jones, T. (2015). Economy-wide Estimates of Rebound Effects: Evidence from Panel Data. The Energy Journal, 37(3), 251-269. https://ideas.repec.org/p/pra/mprapa/65409.html.
  3. Adom, P. (2015). Asymmetric Impacts of the Determinants of Energy Intensity in Nigeria. Energy Economics, 49, 570-580. https://doi.org/10.1016/j.eneco.2015.03.027.
  4. Aigner, D., Lovell, C. A. K. y Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Econometrics, 6(1), 21-37. https://doi.org/10.1016/03044076(77)90052-5.
  5. Battese, G. y Coelli, T. (1988). Prediction of Firm-Level Technical Efficiencies with a Generalized Frontier Production Function Models. Journal of Econometrics, 6(1), 21-37. https://www. sciencedirect.com/science/article/abs/pii/030440768890053X.
  6. Caudill, S. B., Ford, J. M. y Gropper, D. M. (1995). Frontier Estimation and Firm Specific Inefficiency Measures in the Presence of Heteroscedasticity. Journal of Business & Economic Statistics, 13(1), 105-111. https://ideas.repec.org/a/bes/jnlbes/v13y1995i1p105-11.html.
  7. Charnes, A., Cooper, W.W. y Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/03772217(78)90138-8.
  8. Chitnis, M., y Hunt, L. C. (2012). What drives the change in UK household energy expenditure and associated CO2 emissions? Implication and forecast to 2020. Applied Energy 94, 202-214. https://ideas.repec.org/p/sur/seedps/134.html.
  9. Cole, M.A. (2006). Does Trade Liberalization Increase National Energy Use? Economics Letters, 92(1), 108-112. https://doi.org/10.1016/j.econlet.2006.01.018.
  10. Colombi, R., Kumbhakar, S. C., Martini, G. y Vittadini, G. (2014). Closed-Skew Normality in Stochastic Frontiers with Individual Effects and Long/Short-Run Efficiency. Journal of Productivity Analysis, 42(2), 123-136. https://link.springer.com/article/10.1007/s11123-014-0386-y.
  11. Cornillie, J. y Fankhauser, S. (2004). The Energy Intensity of Transition Countries. Energy Economics,
  12. (3), 283-295. https://doi.org/10.1016/j.eneco.2004.04.015.
  13. Eskeland, G. y Harrison, A. (2003). Moving to Greener Pastures? Multinacional and the Pollution Haven Hypothesis. Journal of Development Economics, 70(1), 1-23. https://doi.org/10.1016/S0304-3878(02)00084-6.
  14. Evans, J., Filippini, M. y Hunt, L. C. (2013). The Contribution of Energy Efficiency Towards Meeting Co2 Targets. En R. Fouquet (ed.), Handbook on Energy and Climate Change (pp. 175-223). Edward Elgar Publishing. https://www.elgaronline.com/view/edcoll/9780857933683/9780857933683.00016.xml.
  15. Farrell, M. J. (1957). The Measurement of Productive Efficiency. Jornal of the Royal Stadistical Society, 120(3), 253-290. https://www.jstor.org/stable/2343100.
  16. Fisher-Vanden, K., Jefferson, G. H., Liu, H. y Tao, Q. (2004). What is Driving China’s Decline in Energy Intensity? Resource and Energy Economics, 26(1), 77-97. https://doi.org/10.1016/j. reseneeco.2003.07.002.
  17. Filippini, M. y Greene, W. (2016). Persistent and Transient Productive Inefficiency: A Maximum Simulated Likelihood Approach. Journal of Productivity Analysis, 45(2), 187–196. https://link.springer.com/ article/10.1007/s11123-015-0446-y.
  18. Filippini, M. y Hunt, L. C. (2011). Energy demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach. Energy Journal, 32(2), 59-80. http://www.iaee.org/ en/publications/ejarticle.aspx?id=2417.
  19. Filippini, M. y Hunt, L. C. (2012). US residential energy demand and energy efficiency: A stochastic
  20. demand frontier approach. Energy Economics, 34(5), 1484-1491. https://doi.org/10.1016/j.eneco.2012.06.013
  21. Filippini, M. y Hunt, L. C. (2015). Measurement of Energy Efficiency Based on Economic Foundations. Energy Economics, 52(1) S5–S16. https://doi.org/10.1016/j.eneco.2015.08.023.
  22. Greene, W. H. (2000). Econometric Analysis. Prentices Hall. https://spu.fem.uniag.sk/cvicenia/ksov/obtulovic/ Mana%C5%BE.%20%C5%A1tatistika%20a%20ekonometria/EconometricsGREENE.pdf.
  23. Greene, W. (2005). Fixed and Random Effects in Stochastic Frontier Models. Journal of Productivity Analysis, 23(1), 7-32. https://link.springer.com/article/10.1007/s11123-004-8545-1#:~:text=A%20fixed%20effects%20model%20is,of%20the%20random%20parameters%20model.
  24. Grossman, G. y Helpman, E. (1991). Innovation and Growth in the Global Economy. MIT Press. https:// mitpress.mit.edu/books/innovation-and-growth-global-economy.
  25. Hadri, K. (1999). Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function. Journal of Business & Economic Statistics, 17(3), 359-363. https://econpapers.repec.org/article/ besjnlbes/v_3a17_3ay_3a1999_3ai_3a3_3ap_3a359-63.htm.
  26. Hang, L. y Tu, M. (2007). The impacts of Energy Prices on Energy Intensity: Evidence from China. Energy Policy, 35(5), 2978-2988. https://doi.org/10.1016/j.enpol.2006.10.022.
  27. Holmes, T.J. y Schmidtz, J.A. (2001). Competition at Work: Railroads vs. Monopoly in the U.S. Shipping Industry. Quarterly Review, 25, 3-9. https://ideas.repec.org/a/fip/fedmqr/y2001isprp329nv.25no.2.html.
  28. Hubler, M. (2009). Energy Saving Technology Diffusion via FDI dnd Trade: a CGE of China. Kiel Working Paper, (1479). https://ideas.repec.org/p/zbw/ifwkwp/1479.html.
  29. Huntington, H. G. (1994). Been top down so long it looks Like Bottom up to me. Energy Policy, 22(10), 833–839. https://doi.org/10.1016/0301-4215(94)90142-2.
  30. International Energy Agency (IEA). (2009). Progress with Implementing Energy Efficiency Policies in the g8. https://www.iea.org/reports/progress-with-implementing-energy-efficiency-policies-in-the-g8.
  31. International Energy Agency (IEA). (2015). Capturing the Multiple Benefits of Energy Efficiency. https://
  32. www.iea.org/reports/capturing-the-multiple-benefits-of-energy-efficiency.
  33. International Energy Agency (IEA). (2016). Energy efficiency Market Report 2016. https://www.iea.org/
  34. reports/energy-efficiency-2016.
  35. International Energy Agency (IEA). (2018). WEO 2018- Energy, water and Sustainable Development Goals. https://www.iea.org/reports/energy-water-and-the-sustainable-development-goals.
  36. International Energy Agency (IEA). (2019). IEA Headline Global Energy Data (2019 edition). https://vipo.iea.org/media/statistics/IEA_HeadlineEnergyData.xlsx#.
  37. International Energy Agency (IEA). (2020). World Energy Balances Highlights (2020 edition). https:// www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights.
  38. International Energy Agency (IEA). (2021). Policies Database, Efficiency Energy. https://www.iea.org/
  39. policies.
  40. Kipouros, P. (2017). Energy Efficiency and the Rebound Effect in Developing Countries [tesis de doctorado, Universidad de Surrey]. https://seec.surrey.ac.uk/wp-content/uploads/2018/10/2018ParaskevasKipurosThesis.pdf.
  41. Kopp, R. J. (1981).The Measurement Of Productive Efficiency: A reconsideration. The Quarterly Journal of Economics, 96(3), 477–503. https://doi.org/10.2307/1882683.
  42. Kumbhakar, S. C. y Hjalmarsson, L. (1995). Labour-Use Efficiency in Swedish Social Insurance Offices. Journal of Applied Econometrics, 10(1), 33–47. https://ideas.repec.org/a/jae/japmet/v10y1995i1p33-47.html.
  43. Kumbhakar, S. C., Lien, G. y Hardaker, J. B. (2012). Technical Efficiency Incompeting Panel DataModels: A Study of Norwegian Grain Farming. Journal of Productivity Analysis, 41(2), 321-37. https://link.springer.com/article/10.1007/s11123-012-0303-1.
  44. Kumbhakar, S. y Lovell, C. (2000). Stochastic Frontier Analysis. Cambridge University Press. http://catdir.loc.gov/catdir/samples/cam032/99031297.pdf.
  45. Kumbhakar, S. C., Wang, H. y Horncastle, A. (2015). A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata. Cambridge University Press. https://assets.cambridge.org/97811070/29514/
  46. frontmatter/9781107029514_frontmatter.pdf.
  47. Meeusen, W. y van den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International economic review, 18(2), 435-444. https://econpapers.repec.org/article/ieriecrev/v_3a18_3ay_3a1977_3ai_3a2_3ap_3a435-44.htm.
  48. Metcalf, G. E (2008). An Empirical Analysis of Energy Intensity and its Determinants at the State Level. The Energy Journal, 29(3), 1-26. https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Reprint08-8.pdf.
  49. Mielnik, O. y Goldemberg, J. (2002). Foreign direct investment and decoupling between energy and gross domestic product in developing countries. Energy Policy 30, 87-89. https://doi.org/10.1016/S03014215(01)00080-5.
  50. Milner, C. y Westtaway, T. (1994). The Effect of Size on Sources of Medium-term Growth in Developing Countries. Scottish Journal of Political Economy, 41(2): 128-141. https://ideas.repec.org/a/bla/scotjp/v41y1994i2p128-41.html.
  51. Moshiri, S. y Duah, N. (2016). Changes in Energy Intensity in Canada. The Energy Journal, 37(4), 315-342. https://ideas.repec.org/a/aen/journl/ej37-4-moshiri.html.
  52. Myers, J. G. y Nakamura, L. (1978). Saving Energy in Manufacturing: The Post-embargo Record. Universidad de California.
  53. Lin, B. y Moubarak, M. (2014). Estimation of energy saving potential in China’s paper industry. Energy, Elsevier, 65(C), 182-189. https://ideas.repec.org/a/eee/energy/v65y2014icp182-189.html.
  54. Organización Latinoamericana de Energía (OLADE). (2016). Planeta Eficiente, Planeta Consciente: Eficiencia Energética y Desarrollo Sostenible. https://biblioteca.olade.org/opac-tmpl/Documentos/old0356.pdf.
  55. Schmidt, P. y Lin, T.-F. (1984). Simple Tests of Alternative Specifications in Stochastic Frontier Models. Journal of Econometrics, 24(3), 349–61. https://doi.org/10.1016/0304-4076(84)90058-7.
  56. Schmidt, P. y Sickles, R. C. (1984). Production Frontiers and Panel Data. Journal of Business and Economic Statistics, 2(4), 367–374. https://www.jstor.org/stable/1391278.
  57. Shen, L. (2007). The Changes of China’s Foreign Trade Structure are Harmful to Energy-Saving and Consumption Reducing. Manage World, (10), 43-50.
  58. Weyman-Jones, T.G. y Milner, C. (2003). Relative National Efficiency and Country Size: Evidence for Developing Countries. Review of Development Economics, 7(1), 1-14. https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9361.00171.
  59. Zhang, S. (2016). Energy Efficiency and Business Performance: Evidence of the Swedish Industry [tesis de doctorado, Universidad de Ciencias Agrícolas de Suecia].
  60. Zhou, P., Ang, B. y Zhou, D. (2012). Measuring Economy-Wide Energy Efficiency Performance: A Parametric Frontier Approach. Applied Energy, 90(1), 196–200. https://ideas.repec.org/a/eee/appene/v90y2012i1p196-200.html.
Cómo citar
Ortega, D., & Contreras, J. (2022). Determinantes de la eficiencia energética: evidencia del grupo Brics (1990-2018). Semestre Económico, 24(57), 282-319. https://doi.org/10.22395/seec.v24n57a14

Descargas

La descarga de datos todavía no está disponible.

Send mail to Author


Send Cancel

Estamos indexados en