ECONOMIC VIABILITY OF AGRIVOLTAIC SYSTEMS IN COLOMBIA

Carlos Harvey Salamanca Falla | Bio
Universidad Surcolombiana
Juan Sebastian Babativa Torres | Bio
Universidad Surcolombiana
Andrés David Bahamon Sáenz | Bio
Universidad Surcolombiana

Abstract

An agrivoltaic system is a strategic and innovative approach that combines renewable energy with agricultural production. Several existing studies describe the advantages of agrivoltaic systems from different points of view. However, a deeper analysis of these systems is needed to understand their economic viability and their compatibility with the main agricultural products in Colombia, such as coffee. A literature review was conducted with the aim to determine the current status and economic viability of this technology in Colombia, as well as define the main profits generated by this system. Additionally, an analysis of the implementation of this technology in other countries was carried out to determine the costs and estimate the profitability of this system based on the simulation of a case study. The results of the research revealed that in the proposed designs for the agrivoltaic system, the expected profitability is up to 9% with a return of investments in the medium term. This presents a great approximation to the implementation of agrivoltaics systems in Huila and their compatibility with coffee cultivation.

References

  1. Agostini, A., Colauzzi, M., y Amaducci, S. (2021). Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281. https://doi.org/10.1016/j.apenergy.2020.116102
  2. Alarcó López, A. (2011). Modelo de gestión productiva para el cultivo de café (Coffea Arabica l.) en el sur de Ecuador. https://oa.upm.es/9985/
  3. Amaducci, S., Yin, X., y Colauzzi, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. Applied Energy, 220, 545–561. https://doi.org/10.1016/j.apenergy.2018.03.081
  4. Arcila Pulgarín, J. (2007). Sistemas de producción de café en Colombia. https://biblioteca.cenicafe.org/bitstream/10778/720/3/2.%20Crecimiento%20y%20desarrollo%20planta%20de%20caf%c3%a9.pdf
  5. Bote, A. D., y Struik, P. C. (2011). Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Journal of Horticulture and Forestry, 3(11), 336–341. https://edepot.wur.nl/192807
  6. Comité Cafetero del Huila. (2022, February 11). Mapa Cosecha Cafetera. https://huila.federaciondecafeteros.org/cosecha-cafetera/
  7. Consejo de Neiva. (2021, 1 de septiembre). Acuerdo No 017 de 2021. Por Medio Del Cual Se Declara a Neiva Ciudad Del Sol, Se Establece El Uso de Fuentes No Convencionales de Energía - Fnce - En El Municipio de Neiva y Se Dictan Otras Disposiciones. https://sunnyapp.com/wp-content/uploads/2022/09/ACUERDO-017-DEL-23-08-2021.pdf
  8. Cusva García, A. C. (2022). Análisis para determinar la viabilidad y potencialidad de sistemas agrofotovoltaicos en zonas agricultoras de Colombia. https://repositorio.uniandes.edu.co/server/api/core/bitstreams/cdc77f59-e063-47f6-a708-bcc515d75d84/content
  9. Dolezal, A. G., Torres, J., y O’Neal, M. E. (2021). Can Solar Energy Fuel Pollinator Conservation? In Environmental Entomology, 50 (Issue 4), 757–761). Entomological Society of America. https://doi.org/10.1093/ee/nvab041
  10. Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., y Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36(10), 2725–2732. https://doi.org/10.1016/j.renene.2011.03.005
  11. Elamri, Y., Cheviron, B., López, J. M., Dejean, C., y Belaud, G. (2018). Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural Water Management, 208, 440–453. https://doi.org/10.1016/j.agwat.2018.07.001
  12. EU. (2014). Guide to Cost-benefit Analysis of Investment Projects for Cohesion Policy 2014-2020. https://ec.europa.eu/regional_policy/en/information/publications/guides/2014/guide-to-cost-benefit-analysis-of-investment-projects-for-cohesion-policy-2014-2020
  13. Feuerbacher, A., Laub, M., Högy, P., Lippert, C., Pataczek, L., Schindele, S., Wieck, C., y Zikeli, S. (2021). An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics. Agricultural Systems, 192. https://doi.org/10.1016/j.agsy.2021.103193
  14. FHA. (2004). Producción de café con sombra de maderables. http://www.fhia.org.hn/descargas/Programa_de_Cacao_y_Agroforesteria/guia_produccion_%20cafe_con_sombra_de_maderables.pdf
  15. Gobernación del Huila. (2021, July 25). Caficultura huilense sigue creciendo. https://www.huila.gov.co/publicaciones/10606/caficultura-huilense-sigue-creciendo/#:~:text=Durante%20el%202020%20el%20Huila,productor%20del%20grano%20en%20Colombia.
  16. Gonocruz, R. A., Nakamura, R., Yoshino, K., Homma, M., Doi, T., Yoshida, Y., y Tani, A. (2021). Analysis of the rice yield under an agrivoltaic system: A case study in Japan. Environments - MDPI, 8(7). https://doi.org/10.3390/environments8070065
  17. Graham, M., Ates, S., Melathopoulos, A. P., Moldenke, A. R., DeBano, S. J., Best, L. R., y Higgins, C. W. (2021). Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86756-4
  18. Hassanien, R. H. E., Li, M., y Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. In Renewable and Sustainable Energy Reviews 54, pp. 989–1001. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.10.095
  19. IDEAM. (2022). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia. http://atlas.ideam.gov.co/visorAtlasRadiacion.html
  20. Leon, A., y Ishihara, K. N. (2018). Assessment of new functional units for agrivoltaic systems. Journal of Environmental Management, 226, 493–498. https://doi.org/10.1016/j.jenvman.2018.08.013
  21. NREL. (2022). NSRDB: Base de datos nacional de radiación solar. https://nsrdb.nrel.gov/
  22. Oliveros-Tascón, C. E., y Sanz-Uribe, J. R. (2011). Ingeniería y café en Colombia Engineering and Coffee in Colombia. Revista de Ingeniería, 1(33), 99-114. https://doi.org/https://doi.org/10.16924/revinge.33.10
  23. Poonia, S., Jat, N. K., Santra, P., Singh, A. K., Jain, D., y Meena, H. M. (2022). Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India. Renewable Energy, 184, 149–163. https://doi.org/10.1016/j.renene.2021.11.074
  24. Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., Braun, C., Weselek, A., Bauerle, A., Högy, P., Goetzberger, A., y Weber, E. (2020). Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Applied Energy, 265. https://doi.org/10.1016/j.apenergy.2020.114737
  25. Sojib Ahmed, M., Rezwan Khan, M., Haque, A., y Ryyan Khan, M. (2022). Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable. Applied Energy, 323. https://doi.org/10.1016/j.apenergy.2022.119560
  26. Taki, M., Rohani, A., y Rahmati-Joneidabad, M. (2018). Solar thermal simulation and applications in greenhouse. In Information Processing in Agriculture, 5 (Issue 1), 83–113. https://doi.org/10.1016/j.inpa.2017.10.003
  27. Unidad de Planificación Rural Agropecuaria. (2021). Evaluaciones Agropecuarias Municipales-EVA. EVA Departamental 2019-2021. https://experience.arcgis.com/experience/17859d5712b046fca6b0df5781e0b560/page/EVAs/?views=EVA-Departamental--2019---2021
  28. Villarreyna, A., y Rogelio, A. (2016). Efecto de los árboles de sombra sobre el rendimiento de los cafetos, basado en perfiles de daño. https://doi.org/10.13140/RG.2.2.27058.61124
  29. Weselek, A., Bauerle, A., Hartung, J., Zikeli, S., Lewandowski, I., y Högy, P. (2021). Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agronomy for Sustainable Development, 41(59). https://doi.org/10.1007/s13593-021-00714-y
  30. XM. (2022). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasez
  31. Zheng, J., Meng, S., Zhang, X., Zhao, H., Ning, X., Chen, F., Omer, A. A. A., Ingenhoff, J., y Liu, W. (2021). Increasing the comprehensive economic benefits of farmland with even-lighting agrivoltaic systems. PLoS ONE, 16(15 July). https://doi.org/10.1371/journal.pone.0254482
  32. Zografidou, E., Petridis, K., Petridis, N. E., y Arabatzis, G. (2017). A financial approach to renewable energy production in Greece using goal programming. Renewable Energy, 108, 37–51. https://doi.org/10.1016/j.renene.2017.01.044
How to Cite
Salamanca Falla, C. H., Babativa Torres, J. S., & Bahamon Sáenz, A. D. (2024). ECONOMIC VIABILITY OF AGRIVOLTAIC SYSTEMS IN COLOMBIA. Semestre Económico, 27(62), 1-20. https://doi.org/10.22395/seec.v27n62a4561

Downloads

Download data is not yet available.

Send mail to Author


Send Cancel

We are indexed in