Towards a contextual model for data quality in precision agriculture

Fulvio Yesid Vivas Cantero | Bio
Universidad del Cauca
Juan Carlos Corrales | Bio
Universidad del Cauca
Gustavo Adolfo Ramirez Gonzalez | Bio
Universidad del Cauca


Precision agriculture is a farming management concept, based on the crop variability in the field; it comprises several stages: data collection, information processing and decision-making. After an extensive review of the literature, it appears that data quality control is an important process in precision agriculture and can be considered in the data collection process. This paper makes an approach to data architecture quality control by applying the contextual information of the acquisition system (sad) and environment context information. This approach can provide the sad the capability to understand the situations of their environment in order to improve the quality of data for decision-making.


[1] C. LAU, A. Jarvis, and J. Ramírez, “Agricultura Colombiana: Adaptación al Cambio Climático”, Cent. Int. Agric. Trop. (CIAT). 4p. …, vol. 1, p. 4, 2011.

[2] K. Ni, M. Srivastava, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler, G. Pottie, and M. Hansen, “Sensor network data fault types”, ACM Transactions on Sensor Networks, vol. 5, N.° 3. pp. 1–29, 2009.

[3] E. C.-H. Ngai and P. Gunningberg, “Quality-of-information-aware data collection for mobile sensor networks”, Pervasive Mob. Comput., vol. 11, pp. 203–215, 2014.

[4] S. Ji, R. Beyah, and Y. Li, “Continuous data collection capacity of wireless sensor networks under physical interference model”, Mob. Adhoc Sens. Syst. …, 2011.

[5] C. L. Muller, L. Chapman, C. S. B. Grimmond, D. T. Young, and X.-M. Cai, “Toward a Standardized Metadata Protocol for Urban Meteorological Networks”, Bull. Am. Meteorol. Soc., vol. 94, no. 8, pp. 1161–1185, 2013.

[6] K. Hubbard, J. You, and M. Shulski, “Toward a Better Quality Control of Weather Data”, pp. 3–30, 2012.

[7] C. Gwilliams, A. Preece, and A. Hardisty, “Local and global knowledge to improve the quality of sensed data”, Int. J. …, vol. 2, N.° 2, pp. 164–180, 2012.

[8] A. K. Dey, “Understanding and Using Context,” Pers. Ubiquitous Comput., vol. 5, N.° 1, pp. 4–7, 2001.

[9] Organizacion Meteorológica Mundial - OMM, Guía de prácticas climatológicas Edición de 2011 OMM N.° 100. Ginebra Suiza, 2011.

[10] D. C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. E. J. Behrens, R. Bucholz, A. Chang, L. Chen, M. Corbetta, S. W. Curtiss, S. Della Penna, D. Feinberg, M. F. Glasser, N. Harel, a C. Heath, L. Larson-Prior, D. Marcus, G. Michalareas, S. Moeller, R. Oostenveld, S. E. Petersen, F. Prior, B. L. Schlaggar, S. M. Smith, a Z. Snyder, J. Xu, and E. Yacoub, “The Human Connectome Project: a data acquisition perspective”, Neuroimage, vol. 62, N.° 4, pp. 2222–31, 2012.

[11] C. a. Fiebrich, C. R. Morgan, A. G. McCombs, P. K. Hall, and R. a. McPherson, “Quality Assurance Procedures for Mesoscale Meteorological Data”, J. Atmos. Ocean. Technol., vol. 27, N.° 10, pp. 1565–1582, 2010.

[12] D. Ballari, M. Wachowicz, and M. A. M. Callejo, “Metadata behind the interoperability of wireless sensor networks”, Sensors, vol. 9, N.° 5, pp. 3635–3651, 2009.

[13] G. Percivall, C. Reed, and J. Davidson, “Open Geospatial Consortium Inc . OGC White Paper OGC ® Sensor Web Enablement: Overview And High Level Architecture”, 2007 IEEE Autotestcon, vol. 4540, N.° December, pp. 1–14, 2007.

[14] R. Lemmens, T. Everding, C. Stasch, I. Simonis, J. Echterhoff, S. Liang, A. Bröring, and S. Jirka, New generation Sensor Web Enablement., vol. 11, N.° 3. 2011.

[15] S. Cox, “Observations and measurements-XML implementation”, OGC document. Open Geospatial Consortium Inc., pp. 1–76, 2011.

[16] M. Botts and A. Robin, “OpenGIS ® Sensor Model Language ( SensorML) Implementation Specification”, Design. p. 180, 2007.

[17] A. Na and M. Priest, “Sensor Observation Service”, English, vol. OGC 06–009, N.° OGC 06–009r6, pp. 1–104, 2007.

[18] S. J. K. Mason, S. B. Cleveland, P. Llovet, C. Izurieta, and G. C. Poole, “A centralized tool for managing, archiving, and serving point-in-time data in ecological research laboratories”, Environ. Model. Softw., vol. 51, pp. 59–69, 2014.

[19] G. Huang, X. Y. Wu, M. Yuan, and R. F. Li, “Research on Data Quality of E&P Database Base on Metadata-Driven Data Quality Assessment Architecture”, Appl. Mech. Mater., vol. 530–531, pp. 813–817, 2014.

[20] J. Estévez, P. Gavilán, and J. V. Giráldez, “Guidelines on validation procedures for meteorological data from automatic weather stations”, J. Hydrol., vol. 402, N.° 1–2, pp. 144–154, 2011.

[21] A. M. D. S. A. D. J. A. Ritaban Dutta Claire D’Este, “Dynamic Evaluation and Visualisation of the Quality and Reliability of Sensor Data Sources”, Int. J. Adv. Comput. Sci. Appl., vol. 4, N.° 8, pp. 96–103, 2013.

[22] C. Atzberger, “Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs”, Remote Sens., vol. 5, N.° 2, pp. 949–981, 2013.
How to Cite
Vivas Cantero, F. Y., Corrales, J. C., & Ramirez Gonzalez, G. A. (2015). Towards a contextual model for data quality in precision agriculture. Revista Ingenierías Universidad De Medellín, 15(29), 99-112.


Download data is not yet available.

Send mail to Author

Send Cancel

We are indexed in